Expressions and assignments

A more pathological situation occurs when unsigned and signed 32-bit integers are mixed in an
expression and assigned to a signed long. The C and C++ language standards effectively
promote the expression to unsigned in the case where int and unsigned int are mixed. The
following code fragment shows a case where a signed 32-bit integer with a value of -2 is added to
an unsigned 32-bit integer whose value is 1. Arithmetically the result should be -1, but in a 64-bit
system the right hand value expression becomes unsigned according to the C promotion rules, and
then, upon assignment to a 64-bit integer, the sign is not extended. One solution is to cast one of the
operands to its 64-bit type. This will cause the other operands to be promoted to 64-bits as is the
resulting expression, and no further conversion is needed when the expression is assigned. Another
solution is fo cast the entire expression such that sign extension occurs on the assignment.

long n;

int i = -2;

unsigned k = 1;

Expression Result on Result on Explanation
32-bitsystem 64-bit system

32-bit int iis added to 32-bit unsigned int k. The
expression becomes a 32-bit unsigned int. Thisis
then assigned to 1long n. Because the expression is
unsigned, no sign extension occurs.

n =1 + k; -1 4294967295

32-bit int i is promoted to a 1ong and k is promoted
to an unsigned long resulting in a 64-bit unsigned

(long)i + k; -1 -1 expression. The sign of i has been extended when it was
promoted. No conversion is performed when the result is
assigned fo n.

=]
]

This expression achieves the result in a different way.
The unsigned int expression is then cast to an int.
Since the resulting expression is signed, the sign is
properly extended when assigned to n.

(int) (1 + k); -1 -1

=]
I

Passing parameters into functions

In C and C++, parameters are normally passed to functions by value, and C++ also has a call by
reference feature. In all cases, the parameters are fully evaluated first, whether single variables,
constants or expressions. The order of the evaluation of the parameters is unspecified and may be
different, not only on different systems, but also on the same system.

The C language standard defines function prototypes where parameters passed into a function must
be typed, as in:

double AMathFunction(double, int);
In this case, all the parameters are fully defined. There is another case where C allows a variable
number of parameters. In this case, a function may take an unknown number of parameters:

int printf(const char *, ...);

The ellipsis (. . .) tells the compiler that the caller of the function may provide more than the single
parameter. There is no type checking on the additional parameters.

A third case is provided as compatibility to legacy C applications where a function prototype is either
not included at all or a function declaration is included. The function declaration contains no
parameter list, and, similar to the variable parameter list above, there is no type checking. This

compatibility is frequently termed “K&R” for Brian Kernighan and Dennis Ritchie, the inventors of C. In
the case where the data type is not defined, the parameter is promoted according to the usual
promotion rules defined by the standard. In the case where the data type is defined by a function
prototype, the parameter is converted fo that type according to the standard rules. When the type of a
parameter is not specified, the parameter is promoted to the larger type. In a 64-bit system, integral
types are converted to 64-bit integral types and single precision floating-point types are promoted to
double precision. If a return value is not otherwise specified, the default return value for a function is
int.

While the C++ language requires fully prototyped functions, function prototypes should always be
used in a C program because of their strong data typing and error reduction properties. Also, the use
of function prototypes improves performance in reducing the additional code used in the promotion
and demotion of the data. The use of function prototypes can also expose latent bugs that might exist
in a program and will significantly aid porting applications to 64-bit platforms.

Parameters behave as expressions, and are evaluated before being promoted. In the following case:

long testparm(long j)
{

}

int main()
{

int 1 = -2;
unsigned k = 1U;
long n = testparm(i + k);

return j;

}

On a 64-bit system, testparm returns 4294967295 because the expression i + k is an
unsigned 32-bit expression, and when promoted to a 1ong, the sign does not extend.

Additionally, many systems now use registers to pass parameters rather than the stack. While this
should be transparent to most programs, there is one common programming trick that can cause
incorrect results. We want the program to print the hexadecimal value of a float:

float £ = 1.25;

printf (*The hex value of %f is %x\n”, f, f);

On a stack-based system, the appropriate hexadecimal value is printed, but in a register-based
system, the hexadecimal value is read from an integer register, not the floating-point register. One
solution is fo use a pointer:

printf (“*The hex value of %f is %x\n”, f, *(int *)&f);

In this case, the address of the floating-point variable £ is cast to a pointer to an int which is then
dereferenced.

Doubles are generally 64-bits wide and comply with the IEEE-754 floating-point standard on both
32-bit and é4-bit systems.

Passing parameters by reference in C++

The C++ language also permits passing parameters by reference. The compiler will not permit a 64-
bit variable to be passed by reference to a function unless the parameter is const, where the low
order 4 bytes are passed into the function with the same effect as when passing parameters by value.
The example below demonstrates this concept.

int64_t var64;
int noconst32(int &) ;

int const32(const int &);

int rv = noconst32(varé4); // compiler will reject this

noconst.cc:13 error: invalid initialization of reference of type 'int&'
from expression of type 'inté64_t'

rv = const32(var64); // compiler will accept this.

Numeric constants

Integer constants are generally taken as signed 32-bit integers, such as 1234. The suffix L is used to
indicate a 1ong constant, such as 1234L. The suffix U is used to indicate an unsigned constant,
and may be used either alone or with L. Hexadecimal constants are commonly used as masks or
specific bit values. Hexadecimal constants without a suffix are defined as unsigned int if it will fit
into 32 bits and if the high order bit is turned on.

On a 32-bit system, the constant that might be used to set all the bits in a value might be:

e OxFFFFFFFF Thisis a 32-bit unsigned int.

e OxFFFFFFFFL Thisis a signed long on a 64-bit system and an unsigned long ona
32-bit system. On a 32-bit system this sets all the bits, but on a 64-bit system only the low
order 32-bits are set, resulting in the value 0x00000000FFFFFFFF.

e O0Ox7FFFFFFF Thisis a signed int.

If the developer wants to turn all the bits on, a portable way to do this is to define a signed long
constant with a value of -1. This turns all the bits on since twos complement arithmetic is used.

long x = -1L;

Another common construct is the setting of the most significant bit. Typically, the constant
0x80000000 is used on a 32-bit system. A more portable method of doing this is to use a shift
expression using the compiletime constant expression ((sizeof(long)*8) - 1). This expression will be 31
on a 32-bit system and 63 on a 64-bit system.

1L << ((sizeof(long)*8) - 1);

Since this is a constant expression, the compiler will fold this expression into the appropriate constant
so that this will work on a 16-bit, 32-bit or 64-bit system.

C/C++ integer promotions

The standard C and C++ language integer promotion rules can cause some problems when porting
existing code from 32-bits to 64-bits. Every integer type is assigned a rank. One key statement is “No
two signed integer types shall have the same rank, even if they have the same representation”.®
Signed integer types have higher rank than signed integer types of lesser precision. Thus the ranking
of signed integer types are from the highest to lowest rank: 1ong long int, long int, int,
short int, signed char. The rank of an unsigned integer type is equal to the rank of the
corresponding signed integer type. When evaluating an expression consisting of two operands of
different rank, the standard dictates that the operand of lesser rank be promoted to the type of the
operand with greater rank. In the case of a signed type, when it is promoted, its sign bit is
propagated. In the case of promoting an unsigned 32-bit value to a 64-bit value, the sign bit does not

SANSI/ISO/IES-9899:1999 C International standard Section 6.3.1.1

10

