
**Notice: This is a translation from: Turbo Pascal and the 68000 cpu, to: ansi 'C' and the x86 cpu, of Jack 
Crenshaw's original tutorial.  It contains modifications to the original text to make it more 
relevant to the 'C' language and the x86. By no means is it perfect, since rather than rewrite the entire text and 
make improvements, I tried to only make those modification required so that the main flow of the tutirial stayed 
the same. Modifications to the text will be indicated by a: ** .
Also, I'll be using the standard registers of the x86 cpu (ax,bx,cx,...), rather than the extended register 
(eax,ebx, ...). I see no real need to use the extended registers.
Special thanks to those who helped with translating Pascal to 'C' and gave me encouragement to do this.
----------------------------------------------------------------------------------------------------------------------------------------------

LET'S BUILD A COMPILER!

By

Jack W. Crenshaw, Ph.D.

24 July 1988

Part I: INTRODUCTION

**************************************************************************
*                                                                                                            *
*                                   COPYRIGHT NOTICE                                   *

*                                                                                                            *
*   Copyright (C) 1988 Jack W. Crenshaw. All rights reserved.    *

*                                                                                                            *
**************************************************************************

INTRODUCTION
This series of articles is a tutorial on the theory  and practice of  developing language parsers and   compilers. 
Before  we  are finished,  we  will  have  covered  every   aspect   of  compiler construction, designed a new  
programming  language,  and  built a working compiler.

Though I am not a computer scientist by education (my Ph.D. is in a different  field, Physics), I have  been  
interested in compilers for many years.  I have  bought  and tried to digest the contents of virtually every  book 
on  the  subject ever written.  I don't mind  telling you that it was slow going.    Compiler  texts  are written for  
Computer  Science  majors, and are tough sledding for the rest of us.  But over the years a bit of it began to  
seep in. What really caused it to jell was when I began  to  branch off on my own and begin to try things on my  
own computer.  Now I plan to share with you what I have  learned.    At the end of this series you will by no  
means be  a  computer scientist, nor will you know all the esoterics of  compiler  theory.    I intend to completely  
ignore the more theoretical  aspects  of  the  subject.  What you _WILL_ know is all  the  practical aspects that  
one needs to know to build a working system.

This is a "learn-by-doing" series.  In the course of the series I will be performing  experiments  on  a  computer.  
You  will be expected to follow along,  repeating  the  experiments that I do, and  performing  some  on your  
own.  I will be using **Ansi C on a PC  clone.   I will periodically insert examples written in **C.  These will be  
executable code, which you will be expected to copy into your own computer and run.  If you don't have a copy  
of  **C,  you  will be severely limited in how well you will be able to follow what's going on.  If you don't have a 
copy, I urge you to get one.  After  all,  it's an excellent product, good for many other uses!

Some articles on compilers show you examples, or show you  (as in the case of Small-C) a finished product,  
which you can  then copy and  use without a whole lot of understanding of how it works.  I hope to do much  
more  than  that.    I  hope to teach you HOW the things get done,  so that you can go off on your own and not  



only reproduce what I have done, but improve on it.
                              
This is admittedly an ambitious undertaking, and it won't be done in  one page.  I expect to do it in the course  of  
a  number  of articles.    Each  article will cover a single aspect of compiler theory,  and  will  pretty  much  stand 
alone.   If  all  you're interested in at a given time is one  aspect,  then  you  need to look only at that one article. 
Each article will be  uploaded as it  is complete, so you will have to wait for the last one before you can consider  
yourself finished.  Please be patient.

The average text  on  compiler  theory covers a lot of ground that we won't  be covering here.  The typical  
sequence is:

 o An introductory chapter describing what a compiler is.

 o A chapter or two on syntax equations, using Backus-Naur Form  (BNF).

 o A chapter or two on lexical scanning, with emphasis on deterministic and non-deterministic finite 
    automata.

 o Several chapters on parsing theory, beginning with top-down recursive descent, and ending with 
    LALR parsers.

 o A chapter on intermediate languages, with emphasis on P-code and similar reverse polish 
   representations.

 o Many chapters on alternative ways to handle subroutines and parameter passing, type 
    declarations, and such.

 o A chapter toward the end on code generation, usually for some imaginary CPU with a simple
    instruction set.  Most readers  (and in fact, most college classes) never make it this far.

 o A final chapter or two on optimization. This chapter often goes unread, too.

I'll  be taking a much different approach in  this  series.    To begin  with,  I  won't dwell long on options.  I'll be  
giving you _A_ way that works.  If you want  to  explore  options,  well and good ...  I  encourage  you  to do  
so ... but I'll be sticking to what I know.   I also will skip over most of the theory that puts people  to  sleep.  Don't  
get me  wrong:  I  don't  belittle  the theory, and it's vitally important  when it comes to dealing with the more 
tricky  parts  of  a  given  language.  But I believe in putting first things first.    Here we'll be dealing with the 95% 
of compiler techniques that don't need a lot of theory to handle.

I  also  will  discuss only one approach  to  parsing:  top-down, recursive descent parsing, which is the  _ONLY_ 
technique that's at  all   amenable  to  hand-crafting  a  compiler.    The  other approaches are only useful if you  
have a tool like YACC, and also don't care how much memory space the final product uses.
                              
I  also take a page from the work of Ron Cain, the author of  the original Small C.  Whereas almost all other 
compiler authors have historically  used  an  intermediate  language  like  P-code  and divided  the  compiler  
into two parts (a front end that produces P-code,  and   a  back  end  that  processes  P-code  to  produce  
executable   object  code),  Ron  showed  us   that   it   is   a straightforward  matter  to  make  a  compiler  
directly  produce executable  object  code,  in  the  form  of  assembler  language statements.  The code will  
_NOT_ be the world's tightest code ... producing optimized code is  a  much  more  difficult job. But it will work,  
and work reasonably well.   Just so that I   don't leave you with the impression that our end product will  be 
worthless, I _DO_ intend to show you how  to  "soup up" the compiler with some optimization.

Finally, I'll be  using  some  tricks  that I've found to be most helpful in letting  me  understand what's going on 
without wading through a lot of boiler plate.  Chief among these  is  the use of single-character tokens, with no 
embedded spaces,  for  the early design work.  I figure that  if  I  can get a parser to recognize and deal with I-T-
L, I can  get  it  to do the same with IF-THEN-ELSE.  And I can.  In the second "lesson,"   I'll  show  you just how 
easy it  is  to  extend  a  simple parser to handle tokens of arbitrary length.  As another  trick,  I  completely  
ignore file I/O, figuring that  if  I  can  read source from the keyboard and output object to the screen, I can also  
do it  from/to  disk files.  Experience  has  proven  that   once  a   translator    is   working correctly,  it's  a  



straightforward  matter to redirect  the I/O to files.    The last trick is that I  make no attempt  to  do  error  
correction/ recovery.   The   programs   we'll  be  building  will RECOGNIZE errors, and will not CRASH, but they 
will  simply stop on the first error ...  There will be  other tricks that you'll see as you go. Most of them can't be 
found in any compiler textbook, but they work.

A word about style and efficiency.     As  you will see, I  tend to write programs in  _VERY_  small,  easily 
understood pieces.  None of the procedures we'll  be  working with will be more than about 15-20 lines long.  I'm  
a fervent devotee  of  the  KISS  (Keep It Simple, Sidney) school of software development.  I  try  to never do 
something tricky or  complex,  when  something simple will do. Inefficient?  Perhaps, but you'll like the  results.  
As  Brian Kernighan has said,  FIRST  make  it  run, THEN make it run fast. If, later on,  you want to go back  
and  tighten  up  the  code  in  one  of   our  products,  you'll  be  able  to  do  so,  since  the  code  will  be  quite  
understandable. If you  do  so, however, I urge you to wait until the program is doing everything you want it to.

I  also  have  a  tendency  to  delay  building  a module until I discover that I need  it.    Trying  to anticipate  
every possible future contingency can  drive  you  crazy,  and  you'll generally guess wrong anyway.    In  this  
modern day of screen editors and fast compilers, I don't hesitate to change a module when I feel I need a more  
powerful one.  Until then,  I'll  write  only  what I need.

One final caveat: One of the principles we'll be sticking to here is that we don't  fool  around with P-code or  
imaginary CPUs, but that we will start out on day one  producing  working, executable object code, at least in the 
form of  assembler  language source. **[snip]

THE CRADLE
Every program needs some boiler  plate  ...  I/O  routines, error message routines, etc.   The  programs we 
develop here will be no exceptions.    I’ve  tried to hold  this  stuff  to  an  absolute minimum, however, so that  
we  can  concentrate  on  the important stuff  without losing it  among  the  trees.  The code given below  
represents about the minimum that we need to  get  anything done.  It consists of some I/O routines, an error-
handling routine and a skeleton, null main program.   I  call  it  our  cradle.    As we develop other routines, we’ll  
add them to the cradle, and add the calls to them as we  need to.  Make a copy of the cradle and save it,  
because we’ll be using it more than once.
There are many different ways to organize the scanning activities of  a  parser.   In Unix systems, authors tend  
to  use  getc  and ungetc.  I’ve had very good luck with the  approach  shown  here, which is to use  a  single,  
global, lookahead character.  Part of the initialization procedure  (the  only part, so far!) serves to “prime  the  
pump”  by reading the first character from the input stream.  No other special  techniques are required with  
**C ... each successive call to  GetChar will read the next character in the stream.

**Note: copy this top portion of C code, as it will be required in order to compile the examples provided.

/* --- Cradle Program 'C', x86 --- */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* - Constants - */
#define TAB 9
#define BEEP 7

/* - Global Variables - */
  char  Look; /* look ahead character */
  char iGetNum;
  char cGetName;

/* ------ Function Prototypes ------ */
  void _GetChar(void);   void Error(char *);
  void _Abort(char *);   void Expected(char *);
  void Match(char);   void GetName(void);
  void GetNum(void);   void Emit(char *);
  void EmitLn(char *);   void Init(void);



/* ------ End Prototypes ------ */

void _GetChar() /* Read New Character From Input Stream */
{                          
    Look = getchar();
}
/*-------------------------------*/

void Error(char *string) /* Report an Error */
{
    printf("%c\n", BEEP);
    printf("Error: %s.\n", string);
}
/*-------------------------------*/

void _Abort(char *string) /* Report Error and Halt */
{
    Error(string);
    exit(1);
}
/*-------------------------------*/

void Expected(char *string)  /* Report What Was Expected */
{   char a_string[20];

    strcpy(a_string, string);
    strcat(a_string, " Expected");
    _Abort(a_string);
}
/*-------------------------------*/

void Match(char x)          /* Match a Specific Input Character */
{   char string[6];

    if(Look == x)
    {    _GetChar();
    }
    else
    {    strcpy(string, "\" \"");
         string[1] = x;
         Expected(string);
    }
}
/*-------------------------------*/

void GetName() /* Get an Identifier */
{   
    if(isalpha(Look) == 0)
    {    Expected("Name");
    }
    cGetName = toupper(Look);
    _GetChar();
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{   



    if(isdigit(Look) == 0)
    {   Expected("Integer");
    }
    iGetNum = Look;
    _GetChar();
}
/*-------------------------------*/

void Emit(char *a_string)  /* Output a String with Tab */
{
    printf("\%c %s", TAB, a_string);
}
/*-------------------------------*/

void EmitLn(char *a_string) /* Output a String with Tab and CRLF */
{
    Emit(a_string);
    printf("\n");
}
/*-------------------------------*/

void Init() /* Initialize */
{    _GetChar();
}
/*-------------------------------*/

void main() /* Main Program */
{    Init();
}
/*-------------------------------*/

That's it for this introduction.  Copy the code above into **C and compile it.  Make sure that it compiles and runs 
correctly. Then proceed to the first lesson, which is on expression parsing.

GETTING STARTED
If you’ve read the introduction document to this series, you will already know what  we’re  about.    You will also 
have copied the cradle software  into your **C system, and have compiled it.  So you should be ready to go.

The purpose of this article is for us to learn  how  to parse and translate mathematical expressions.  What we 
would like to see as output is a series of assembler-language statements  that perform the desired actions. 
For purposes of definition, an expression is the right-hand side of an equation, as in 

x = 2*y + 3/(4*z)
In the early going, I’ll be taking things in VERY  small steps.
That’s  so  that  the beginners among you won’t get totally lost.  There are also  some  very  good  lessons to be  
learned early on, that will serve us well later.  For the more experienced readers: bear with me.  We’ll get rolling 
soon enough.

SINGLE DIGITS
In keeping with the whole theme of this series (KISS, remember?), let’s start with the absolutely most simple 
case we can think of. That, to me, is an expression consisting of a single digit.
Before starting to code, make sure you have a  baseline  copy  of the  “cradle” that I gave last time.  We’ll be  
using it again for other experiments.  Then add this code:**

/* - Function Prototypes - */
  void Expression(void);



void Expression() /* Parse and Translate a Math Expression */
{   char a_string[20];
                         
    GetNum();
    strcpy(a_string, "mov  ax,  ");
    a_string[9] = iGetNum;
    EmitLn(a_string);
}
/*-------------------------------*/

And add the  line  “Expression;”  to  the main program so that it reads:**

void main()                     /* Main Program */
{
    Init();
    Expression();
}
/*-------------------------------*/

Now  run  the  program.  Try  any single-digit  number as input.  You should get  a single line of  assembler-
language output.    Now try any  other character as input, and you’ll  see  that  the  parser properly reports an  
error.

CONGRATULATIONS! You have just written a working translator!
OK, I grant you that it’s pretty limited. But don’t brush  it off too  lightly.  This little “compiler” does,  on  a  very  
limited scale,  exactly  what  any larger compiler does:    it  correctly recognizes legal  statements in the input  
“language” that we have defined for it, and  it produces  correct,  executable assembler code,  suitable  for  
assembling  into  object  format.  Just  as importantly,  it correctly recognizes  statements  that  are NOT legal,  
and gives a  meaningful  error message.  Who could ask for more?  As we expand our parser,  we’d better make 
sure those two characteristics always hold true.
There  are  some  other  features  of  this  tiny  program  worth mentioning.    First,  you  can  see that we don’t  
separate  code generation from parsing ...  as  soon as the parser knows what we want  done, it generates the  
object code directly.    In  a  real compiler, of course, the reads in GetChar would be  from  a  disk file, and the  
writes to another  disk  file, but this way is much easier to deal with while we’re experimenting.
Also note that an expression must leave a result somewhere.  I’ve chosen the  **x86 register  AX.    
I  could have made some other choices, but this one makes sense.

BINARY EXPRESSIONS
Now that we have that under our belt,  let’s  branch  out  a bit.  Admittedly, an “expression” consisting of only  
one  character is not going to meet our needs for long, so let’s see what we can do to extend it. Suppose we  
want to handle expressions of the form:

1+2
or    4-3
or, in general, <term> +/- <term>

(That’s a bit of Backus-Naur Form, or BNF.)

To do this we need a procedure that recognizes a term  and leaves its   result   somewhere,  and  another   that  
recognizes   and distinguishes  between   a  ‘+’  and  a  ‘-‘  and  generates  the appropriate code.  But if  
Expression is going to leave its result in AX, where should Term leave its result?    Answer:    the same place.  
We’re  going  to  have  to  save the first result of Term somewhere before we get the next one.
OK, basically what we want to  do  is have procedure Term do what Expression was doing before.  So just  
RENAME procedure Expression as Term:

**add these to Function Prototypes:
  void Term(void); /* rename Expression() to Term() */
  void Expression(void);



void Term() /* Parse and Translate a Math Expression */
{   char a_string[20];
                         
    GetNum();
    strcpy(a_string, "mov  ax,  ");
    a_string[9] = iGetNum;
    EmitLn(a_string);
}
/*-------------------------------*/

 and enter the following new version of Expression:

void Expression() /* Parse and Translate an Expression */
{   char a_string[20];

    Term();
    strcpy(a_string, "mov  bx, ax");
    EmitLn(a_string);
    switch(Look)
    {   case '+':
            Add();
            break;
        case '-':
            Subtract();
            break;
        default:
            strcpy(string, "Addop");
            Expected(string);
            break;
    }
}
/*-------------------------------*/

Next, just above Expression enter these two procedures:

**add these to Function Prototypes:
  void Add(void);
  void Subtract(void);

void Add() /* Recognize and Translate an Add */
{
    Match('+');
    Term();
    EmitLn("add  ax, bx");
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */
{
    Match('-');
    Term();
    EmitLn("sub  ax, bx");
}
/*-------------------------------*/

When you’re finished with that,  the order of the routines should be:



o Term (The OLD Expression)
o Add
o Subtract
o Expression

Now run the program.  Try any combination you can think of of two single digits,  separated  by  a  ‘+’ or a ‘-‘.  
You should get a series of four assembler-language instructions out  of  each run.  Now  try  some  expressions  
with deliberate errors in them.  Does the parser catch the errors?

Take  a  look  at the object  code  generated.    There  are  two observations we can make.  First, the code  
generated is  NOT what we would write ourselves.  The sequence:**

MOV AX, #n
MOV  BX, AX

is inefficient.  If we were  writing  this code by hand, we would probably just load the data directly to BX.

There is a  message  here:  code  generated by our parser is less efficient  than the code we would write by  
hand.  Get used to it. That’s going to be true throughout this series.  It’s true of all compilers to some extent.  
Computer scientists have devoted whole lifetimes to the issue of code optimization, and there are indeed things 
that can be done to improve the quality  of  code  output.  Some compilers do quite well, but  there  is a heavy  
price to pay in complexity, and it’s  a  losing  battle  anyway ... there will probably never come a time when  a 
good  assembler-language pro-grammer can’t out-program a compiler.    Before  this  session is over, I’ll briefly 
mention some ways that we can do a  little op-timization,  just  to  show you that we can indeed improve things 
without too much trouble.  But remember, we’re here to learn, not to see how tight we can make  the  object  
code.    For  now, and really throughout  this  series  of articles,   we’ll  studiously ignore optimization and 
concentrate  on  getting  out  code that works.

Speaking of which: ours DOESN'T!   The code is _WRONG_!   As things are working  now, the subtraction  
process subtracts BX (which has the FIRST argument in it) from AX (which has the second).  That's the wrong  
way, so we end up with the wrong  sign  for the result. So let's fix up procedure Subtract with a  sign-changer, 
so that it reads

void Subtract() /* Recognize and Translate a Subtract */
{
    Match('-');
    Term();
    EmitLn("sub  ax, bx");
    EmitLn("neg  ax");
}
/*-------------------------------*/

Now  our  code  is even less efficient, but at least it gives the right answer!  Unfortunately, the  rules that give  
the meaning of math expressions require that the terms in an expression come out in an inconvenient  order  for 
us.    Again, this is just one of those facts of life you learn to live with.   This  one will come back to haunt us  
when we get to division.
OK,  at this point we have a parser that can recognize the sum or difference of two digits.    Earlier,  we  could  
only recognize a single digit.  But  real  expressions can have either form (or an infinity of others).  For kicks, go  
back and run the program with the single input line '1'.
Didn't  work, did it?   And  why  should  it?    We  just finished telling  our  parser  that the only kinds of 
expressions that are legal are those  with  two  terms.    We  must  rewrite procedure Expression to be a lot  
more broadminded, and this is where things start to take the shape of a real parser.

GENERAL EXPRESSIONS
In the  REAL  world,  an  expression  can  consist of one or more terms, separated  by  "addops"  ('+'  or  '-').   In  
BNF, this is written

<expression> = <term> [<addop> <term>]*
We  can  accomodate  this definition of  an  expression  with  the addition of  a simple loop to procedure 
Expression:**



void Expression() /* Parse and Translate an Expression */
{
    Term();
    while((Look == '+') || (Look == '-'))
    {    EmitLn("mov  bx, ax");
         switch(Look)
         {    case '+':
                  Add();
                  break;
              case '-':
                  Subtract();
                  break;
              default:
                  Expected("Addop");
                  break;
         }
    }
}
/*-------------------------------*/

NOW we're getting somewhere!   This version handles any number of terms, and it only cost us two extra lines  
of code.  As we go on, you'll discover that this is characteristic  of  top-down parsers ... it only takes a few lines  
of code to accomodate extensions to the language.    That's  what  makes  our  incremental  approach possible.  
Notice, too, how well the code of procedure Expression matches the BNF definition.   That, too, is characteristic 
of the method.  As you get proficient in the approach, you'll  find that you can turn BNF into parser code just 
about as  fast  as you can type!

OK, compile the new version of our parser, and give it a try.  As usual,  verify  that  the  "compiler"   can   handle 
any  legal expression, and  will  give a meaningful error  message  for  an illegal one.  Neat, eh?  You might note 
that in our test  version, any error message comes  out  sort  of buried in whatever code had already been  
generated. But remember, that's just because we are using  the  CRT as our  "output  file"  for   this   series  of  
experiments.  In a production version, the two  outputs  would be separated ... one to the output file, and one to  
the screen.

USING THE STACK
At  this  point  I'm going to  violate  my  rule  that  we  don't introduce any complexity until  it's  absolutely  
necessary, long enough to point out a problem with the code we're generating.  As things stand now, the parser  
uses AX for the "primary" register,  and BX as  a place to store the partial sum.  That works fine for now,  
because  as  long as we deal with only the "addops" '+' and '-', any new term can be added in as soon as it is  
found.  But in general that isn't true.  Consider, for example, the expression

1+(2-(3+(4-5)))

If we put the '1' in BX, where  do  we  put  the  '2'?    Since a general expression can have any degree of  
complexity, we're going to run out of registers fast!

Fortunately,  there's  a  simple  solution.    Like  every modern microprocessor, the **x86 has a stack, which is  
the perfect place to save a variable number of items. So instead of moving the term in AX to  BX, let's just push  
it onto the stack.  For the benefit of  those unfamiliar with **x86 assembler  language,  a  push  is written:**

PUSH    AX
and a pop,

POP      AX

So let's change the EmitLn in Expression to read:**

{    EmitLn("push  ax");

and these lines in Add and Subtract to:**



 EmitLn("pop  bx");
EmitLn("add  ax, bx");

and
EmitLn("pop  bx");
EmitLn("sub  ax, bx");

respectively.  Now try the parser again and make sure  we haven't broken it.
Once again, the generated code is less efficient than before, but it's a necessary step, as you'll see.

MULTIPLICATION AND DIVISION
Now let's get down to some REALLY serious business.  As  you  all know,  there  are  other  math   operators 
than   "addops"  ... expressions can also have  multiply  and  divide operations.  You also  know  that  there  is  
an implied operator  PRECEDENCE,  or hierarchy, associated with expressions, so that in  an expression like

2 + 3 * 4,

we know that we're supposed to multiply FIRST, then  add.    (See why we needed the stack?)

In  the early  days of  compiler  technology,  people used some rather  complex techniques to  insure that  the  
operator  precedence rules were  obeyed.    It turns out,  though,  that  none  of  this  is necessary ... the rules  
can be accommodated quite  nicely  by our top-down parsing technique.  Up till now,  the  only  form  that we've  
considered for a term is that of a  single  decimal  digit.
More generally, we  can  define  a  term as a PRODUCT of FACTORS;
i.e.,

<term> = <factor>  [ <mulop> <factor ]*

What  is  a factor?  For now, it's what a term used to be  ...  a single digit.
Notice the symmetry: a  term  has the same form as an expression.  As a matter of fact, we can  add  to  our  
parser  with  a little judicious  copying and renaming.  But  to  avoid  confusion,  the listing below is the complete  
set of parsing routines.  (Note the way we handle the reversal of operands in Divide.)

**add to Function Prototypes:
    void Factor(void);
    void Multiply(void);
    void Divide(void);

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];

    GetNum();
    strcpy(a_string, "mov  ax,  ");
    a_string[9] = iGetNum;
    EmitLn(a_string);
}
/*-------------------------------*/

void Multiply() /* Recognize and Translate a Multiply */
{   char a_string[20];

    Match('*');
    Factor();
    EmitLn("pop  bx");
    EmitLn("mul  bx");
}
/*-------------------------------*/

void Divide() /* Recognize and Translate a Divide */
{   char a_string[20];



    Match('/');
    Factor();
    EmitLn("pop  bx");
    EmitLn("xchg  ax, bx");
    EmitLn("div  bx");
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
    Factor();
    while((Look == '*') || (Look == '/'))
    {    EmitLn("push  ax");
         switch(Look)
         {    case '*':
                  Multiply();
                  break;
              case '/':
                  Divide();
                  break;
              default:
                  Expected("Mulop");
                  break;
         }
    }
}
/*-------------------------------*/

void Add() /* Recognize and Translate an Add */
{
    Match('+');
    Term();
    EmitLn("pop  bx");
    EmitLn("add  ax, bx");
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */
{
    Match('-');
    Term();
    EmitLn("pop  bx");
    EmitLn("sub  ax, bx");
    EmitLn("neg  ax");
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
    Term();
    while(IsAddop(Look))
    {   EmitLn("push  ax");
        switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;



            default:
                Expected("Addop");
                break;
        }
    }
}
/*-------------------------------*/

Hot dog!  A NEARLY functional parser/translator, **[snip] !  The output is starting to look really useful,  if you  
continue to overlook the inefficiency,  which  I  hope  you will. Remember, we're not trying to produce tight code  
here.

PARENTHESES
We  can  wrap  up this part of the parser with  the  addition  of parentheses with  math expressions.  As you 
know, parentheses are a mechanism to force a desired operator  precedence.    So,   for example,  in the  
expression

2*(3+4) ,

the parentheses force the addition  before  the  multiply.   Much more importantly, though, parentheses  give  us  
a  mechanism for defining expressions of any degree of complexity, as in

(1+2)/((3+4)+(5-6))

The  key  to  incorporating  parentheses  into our parser  is  to realize that  no matter how complicated an  
expression enclosed by parentheses may be,  to  the  rest  of  the world it looks like a simple factor.  That is,  
one of the forms for a factor is:

<factor> = (<expression>)

This is where the recursion comes in. An expression can contain a factor which contains another expression 
which contains a factor, etc., ad infinitum.
Complicated or not, we can take care of this by adding just a few lines of **C to procedure Factor:**

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];

    if(Look == '(')
    {    Match('(');
         Expression();
         Match(')');
    }
    else
    {    GetNum();
         strcpy(a_string, "mov  ax,  ");
         a_string[9] = iGetNum;
         EmitLn(a_string);
    }
}
/*-------------------------------*/

Note again how easily we can extend the parser, and how  well the **C code matches the BNF syntax.
As usual, compile the new version and make sure that it correctly parses  legal sentences, and flags illegal 
ones  with  an  error message.

UNARY MINUS
At  this  point,  we have a parser that can handle just about any expression, right?  OK, try this input sentence:

-1

WOOPS!  It doesn't work, does it?   Procedure  Expression expects everything to start with an integer, so it  
coughs up  the leading minus  sign.  You'll find that +3 won't  work  either,  nor  will something like



-(3-2) .

There  are  a  couple of ways to fix the problem.    The  easiest (although not necessarily the best)  way is to 
stick an imaginary leading zero in  front  of  expressions  of this type, so that -3 becomes 0-3.  We can easily  
patch this into our  existing version of Expression:**

void Expression() /* Parse and Translate an Expression */
{
    if(IsAddop(Look))
    {   EmitLn("mov  ax, 0");
    }
    else
    {   Term();
    }
    while(IsAddop(Look))
    {   EmitLn("push  ax");
        switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            default:
                Expected("Addop");
                break;
        }
    }
}
/*-------------------------------*/

I TOLD you that making changes  was  easy!   **[snip]. Note  the  new  reference  to function IsAddop.  Since  
the test for an addop appeared  twice, I chose  to  embed  it in the new function.  The  form  of  IsAddop should  
be apparent from that for IsAlpha.  Here it is:**

int IsAddop(char ch) /* Recognize an Addop */
{   int rval=0;

    if((ch == '+') || (ch == '-'))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

OK, make these changes to the program and recompile.   You should also include IsAddop in your baseline  
copy of the cradle.   We'll be needing  it  again  later.   Now try the input -1 again.  Wow!  The efficiency of the 
code is  pretty  poor ... six lines of code just for loading a simple constant ... but at least it's correct.  Remember,  
we're not trying to replace **C here.

At this point we're just about finished with the structure of our expression parser.   This version of the program 
should correctly parse and compile just about any expression you care to  throw at it.    It's still limited in that  we  
can  only  handle  factors involving single decimal digits.    But I hope that by now you're starting  to  get  the  
message  that we can  accomodate  further extensions  with  just  some  minor  changes to the parser.   You  
probably won't be  surprised  to  hear  that a variable or even a function call is just another kind of a factor.
In  the next session, I'll show you just how easy it is to extend our parser to take care of  these  things too, and 
I'll also show you just how easily we can accomodate multicharacter numbers and variable names.  So you see,  
we're  not  far at all from a truly useful parser.



A WORD ABOUT OPTIMIZATION
Earlier in this session, I promised to give you some hints  as to how we can improve the quality of the generated  
code.  As I said, the production of tight code is not the  main  purpose  of  this series of articles.  But you need to  
at least know that we aren't just  wasting our time here ... that we  can  indeed  modify  the parser further to  
make  it produce better code, without throwing away everything we've done to date.  As usual, it turns  out that  
SOME optimization is not that difficult to do ... it simply takes some extra code in the parser.

There are two basic approaches we can take:
o Try to fix up the code after it's generated

This is  the concept of "peephole" optimization.  The general idea it that we  know  what  combinations 
of instructions the compiler  is going  to generate, and we also know which ones     are pretty bad (such 
as the code for -1, above).    So all we     do  is  to   scan   the  produced   code,   looking   for   those 
combinations, and replacing  them  by better ones.  It's sort     of   a   macro   expansion,   in reverse,   and 
a  fairly     straightforward  exercise  in   pattern-matching.   The  only complication,  really, is that there 
may be  a  LOT of  such combinations to look for.   It's called  peephole optimization simply because it  

only looks at a small group of instructions at a time.  Peephole  optimization can have a dramatic effect 
on  the  quality  of the code,  with  little  change  to  the structure of the compiler   itself.    There is a price to 
pay, though,  in  both  the  speed,   size, and complexity of  the compiler.  Looking for all those combinations 
calls for a lot of IF tests, each one of which is a source of error.  And, of course, it takes time. In  the  
classical implementation  of a peephole optimizer, it's done as a second pass to the compiler.   The  

output code is  written  to  disk,  and  then the  optimizer  reads  and processes the disk file  again.   As 
a matter of fact,  you can see that the optimizer could  even be a separate PROGRAM from the compiler 
proper.  Since the optimizer only  looks  at the code through a  small  "window"  of  instructions  (hence the 
name), a better implementation would be to simply buffer up a few lines of output, and scan the buffer after 
each EmitLn. 

o Try to generate better code in the first place 
This  approach  calls  for  us  to  look  for   special   cases  BEFORE  we  Emit  them.   As  a  trivial  
example,  we  should  be  able to identify a constant zero,  and  Emit an XOR instead of a MOV, 

or even do nothing at all, as in an add of zero, for example.  Closer to home, if we had  chosen  to 
recognize the unary minus in Factor  instead of in Expression, we could treat  constants  like  -1  as  ordinary 
constants,  rather  then  generating them from  positive  ones.   None of these things are difficult to deal with ...  
they only add extra tests in the code, which is why  I  haven't  included them in our program.  The way I see it,  
once we get to the point that we have a working compiler, generating useful code  that  executes, we can 
always go back and tweak the thing to tighten up the code produced.   That's why there  are  Release 
2.0's in the world.

There IS one more type  of  optimization  worth  mentioning, that seems to promise pretty tight code without too  
much hassle.  It's my "invention" in the  sense  that I haven't seen it suggested in print anywhere, though I have  
no  illusions  that  it's original with me.

This  is to avoid such a heavy use of the stack, by making better use of the CPU registers.  Remember back 
when we were  doing only addition  and  subtraction,  that we used registers  AX  and  BX, rather than the  
stack?  It worked, because with  only  those  two operations, the "stack" never needs more than two entries.

Well,  the **x86 has eight data registers.  Why not use them as a privately managed stack?  The key is to 
recognize  that,  at  any point in its processing,  the  parser KNOWS how many items are on the  stack, so it can 
indeed manage it properly.  We can define a private "stack pointer" that keeps  track  of  which  stack level we're 
at, and addresses the  corresponding  register.   Procedure Factor,  for  example,  would  not  cause data to be  
loaded  into register  AX,  but   into  whatever  the  current  "top-of-stack" register happened to be.

What we're doing in effect is to replace the CPU's RAM stack with a  locally  managed  stack  made  up  of  
registers.    For  most expressions, the stack level  will  never  exceed eight, so we'll get pretty good code out.  
Of course, we also  have  to deal with those odd cases where the stack level  DOES  exceed  eight,  but that's  
no problem  either.    We  simply let the stack spill over into the CPU stack.    For  levels  beyond eight, the code 
is no worse  than  what  we're generating now, and for levels less than eight, it's considerably better.
For the record, I  have  implemented  this  concept, just to make sure  it  works  before  I  mentioned  it to you.  
It does.    In practice, it turns out that you can't really use all eight levels ... you need at least one register free to  
reverse  the  operand order for division. **[snip].  For expressions  that  include  function calls, we would also  



need a register reserved for them. Still, there  is  a  nice improvement in code size for most expressions.
So,  you see,  getting  better   code  isn't   that  difficult,  but  it  does add complexity  to the our  translator  ...  
complexity  we can do without at this point.  For that reason,  I  STRONGLY  suggest that we continue to ignore  
efficiency issues for the rest of this series,  secure  in the knowledge that we can indeed improve the code  
quality without throwing away what we've done.

Next lesson, I'll show you how to deal with variables factors and function calls.  I'll also show you just how easy it 
is to handle multicharacter tokens and embedded white space.

INTRODUCTION
In the last installment, we examined the techniques used to parse and  translate a general math expression.  We 
ended  up  with  a simple parser that  could handle arbitrarily complex expressions, with two restrictions:
   o No variables were allowed, only numeric factors
   o The numeric factors were limited to single digits

In  this  installment,  we'll  get   rid  of  those  restrictions.   We'll  also extend  what   we've   done  to   include  
assignment statements function  calls  and.    Remember,   though,   that   the  second restriction was  mainly  
self-imposed  ...  a choice of convenience on our part,  to make life easier and to let us concentrate on the  
fundamental concepts.    As  you'll  see  in  a bit, it's an easy restriction to get rid of, so don't get  too  hung  up 
about it.  We'll use the trick when it serves us to do so, confident that we can discard it when we're ready to.

VARIABLES
Most expressions  that we see in practice involve variables, such as

b * b + 4 * a * c

No  parser is much good without being able  to  deal  with  them. 
Fortunately, it's also quite easy to do.
Remember that in our parser as it currently stands, there are two kinds of  factors  allowed:  integer  constants 
and  expressions within parentheses.  In BNF notation,

<factor> = <number> | (<expression>)

The '|' stands for "or", meaning of course that either form  is a legal form for a factor.   Remember,  too, that we 
had no trouble knowing which was which  ...  the  lookahead  character is a left paren '(' in one case, and a digit  
in the other.
It probably won't come as too much of a surprise that  a variable is just another kind of factor.    So  we extend 
the BNF above to read:

<factor> = <number> | (<expression>) | <variable>

**[snip]
Armed with that, let's modify the current version of Factor to read:

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];

    if(Look == '(')
    {    Match('(');
         Expression();
         Match(')');
    }
    else if(isalpha(Look))
    {    GetName();
         strcpy(a_string, "mov  ax,  ");
         a_string[9] = cGetName;
         EmitLn(a_string);
    }



    else
    {    GetNum();
         strcpy(a_string, "mov  ax,  ");
         a_string[9] = iGetNum;
         EmitLn(a_string);
    }
}
/*-------------------------------*/

I've  remarked before how easy it is to  add  extensions  to  the parser, because of  the  way  it's  structured.  
You can see that this  still  holds true here.  **[snip].  Notice, too, how the if-else-else structure exactly parallels 
the BNF syntax equation.
OK, compile and test this new version of the parser.  That didn't hurt too badly, did it?

FUNCTIONS
There is only one  other  common kind of factor supported by most languages: the function call.  It's really too  
early  for  us  to deal with functions well,  because  we  haven't yet addressed the issue of parameter passing. 
What's more, a "real" language would include a mechanism to  support  more than one type, one of which 
should be a function type.  We haven't gotten there  yet, either. But I'd still like to deal with functions  now  for  a 
couple of reasons.    First,  it  lets  us  finally  wrap  up the parser in something very close to its final form, and  
second, it  brings up a new issue which is very much worth talking about.

Up  till  now,  we've  been  able  to  write  what  is  called  a "predictive parser."  That  means  that at any point,  
we can know by looking at the current  lookahead character exactly what to do next.  That isn't the case when 
we add functions.  Every language has some naming rules  for  what  constitutes a legal identifier.  For the  
present, ours is simply that it  is  one  of  the letters 'a'..'z'.  The  problem  is  that  a variable name and a  
function name obey  the  same  rules.   So how can we tell which is which? One way is to require that they each 
be declared before  they are used.    **C takes that approach.  The other is that we might require a function to  
be followed by a (possibly empty) parameter list.  That's the rule used in C.

Since  we  don't  yet have a mechanism for declaring types, let's use the C  rule for now.  Since we also don't  
have a mechanism to deal  with parameters, we can only handle  empty  lists,  so  our function calls will have 
the form
                    x()  .

Since  we're  not  dealing  with  parameter lists yet,  there  is nothing  to do but to call the function, so we need 
only to issue a  **CALL  instead of a MOV.

Now that  there are two  possibilities for the "if  (isalpha" branch of  the test  in Factor,  let's  treat  them in a  
separate procedure.
Modify Factor to read:

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];

    if(Look == '(')
    {    Match('(');
         Expression();
         Match(')');
    }
    else if(isalpha(Look))
    {    Ident();
    }
    else
    {    GetNum();
         strcpy(a_string, "mov  ax,  ");
         a_string[9] = iGetNum;
         EmitLn(a_string);



    }
}
/*-------------------------------*/

and insert before it the new procedure

**add to Prototypes:
  void Ident(void);

void Ident() /* Parse and Translate an Identifier */
{   char a_string[20];
    char *Name;

    Name = GetName();
    if(Look == '(')
    {    Match('(');
         Match(')');
         strcpy(a_string, "call    ");
         a_string[6] = cGetName;
         EmitLn(a_string);
    }
    else
    {    strcpy(a_string, "mov  ax,  ");
         a_string[9] = cGetName;
         EmitLn(a_string);
    }
}
/*-------------------------------*/

OK, compile and  test  this  version.  Does  it  parse  all legal expressions?  Does it correctly flag badly formed  
ones?

The important thing to notice is that even though  we  no  longer have  a predictive parser, there is  little  or  no  
complication added with the recursive descent approach that we're  using.   At the point where  Factor  finds an 
identifier (letter),  it  doesn't know whether it's a variable name or a function name, nor does it really care.  It  
simply passes it on to Ident and leaves it up to that procedure to figure it out.  Ident, in  turn,  simply  tucks away  
the identifier and then reads one more  character  to decide which kind of identifier it's dealing with.

Keep this approach in mind.  It's a very powerful concept, and it should be used  whenever  you  encounter  an  
ambiguous situation requiring further lookahead.   Even  if  you  had to look several tokens ahead, the principle  
would still work.

MORE ON ERROR HANDLING
As long as we're talking  philosophy,  there's  another important issue to point out:  error  handling.    Notice that 
although the  parser  correctly  rejects  (almost)   every  malformed   expression  we  can   throw at  it,  with  a 
meaningful  error  message,  we  haven't really had to  do much work to make that happen.  In fact, in the whole 
parser per se (from  Ident  through  Expression)  there are only two calls to the error routine, Expected.  Even 
those aren't necessary ... if you'll look again in Term and Expression, you'll see that those statements can't be 
reached.  I put them  in early on as a  bit  of  insurance,  but  they're no longer needed.  Why don't you delete 
them now?

So how did we get this nice error handling  virtually  for  free? It's simply  that  I've  carefully  avoided  reading  a 
character directly  using  GetChar.  Instead,  I've  relied  on  the  error handling in GetName,  GetNum,  and  
Match  to  do  all  the error checking for me.    Astute  readers  will notice that some of the calls to Match (for  
example, the ones in Add  and  Subtract)  are also unnecessary ... we already know what the character is by the 
time  we get there ... but it maintains  a  certain  symmetry  to leave them in, and  the  general rule to always 
use Match instead of GetChar is a good one.



I mentioned an "almost" above.   There  is a case where our error handling  leaves a bit to be desired.  So far  
we haven't told our parser what and  end-of-line  looks  like,  or  what  to  do with embedded  white  space.  So  
a  space  character  (or  any  other character not part of the recognized character set) simply causes the parser  
to terminate, ignoring the unrecognized characters.

It  could  be  argued  that  this is reasonable behavior at  this point.  In a "real"  compiler, there is usually another  
statement following the one we're working on, so any characters not treated as part of our expression will either 
be used for or  rejected as part of the next one.

But  it's  also a very easy thing to fix up, even  if  it's  only temporary.   All  we  have  to  do  is assert that the  
expression should end with an end-of-line , i.e., a carriage return.

To see what I'm talking about, try the input line

               1+2 <space> 3+4

See  how the space was treated as a terminator?  Now, to make the compiler properly flag this, add the line
if(Look != '\n')
{   Expected("Newline");
}

in the main  program,  just  after  the call to Expression.  That catches anything left over in the input stream.  
**[snip].
As usual, recompile the program and verify that it does what it's supposed to.

ASSIGNMENT STATEMENTS
OK,  at  this  point we have a parser that works very nicely. **[snip].  The compiled  object  file  is  a  whopping 
4752  bytes.   Not  bad, considering we weren't trying very  hard  to  save  either source code or object size.  We  
just stuck to the KISS principle.

Of  course,  parsing  an  expression   is  not  much  good without  having  something  to  do  with  it  afterwards.  
Expressions USUALLY (but not always) appear in assignment statements, in the form

          <Ident> = <Expression>

We're only a breath  away  from being able to parse an assignment statement, so let's take that  last  step.  Just  
after procedure Expression, add the following new procedure:

**add to Prototypes:
  void Assignment(void);

void Assignment()
{   char a_string[20];

    GetName();
    Match('=');
    Expression();
    strcpy(a_string, "lea  dx,  ");
    a_string[9] = cGetName;
    EmitLn(a_string);
    EmitLn("mov  [dx], ax");
}
/*-------------------------------*/

Note again that the  code  exactly parallels the BNF.  And notice further that  the error checking was painless,  
handled by GetName and Match. **[snip].

Now change the call to Expression, in the main program, to one to Assignment.  That's all there is to it.



Son of a gun!  We are actually  compiling  assignment statements. If those were the only kind of statements in a  
language, all we'd have to  do  is  put  this in a loop and we'd have a full-fledged compiler!

Well, of course they're not the only kind.  There are also little items  like  control  statements  (IFs  and  loops),  
procedures, declarations, etc.  But cheer  up.    The  arithmetic expressions that we've been dealing with are 
among the most challenging  in a language.      Compared  to  what  we've  already  done,  control statements  
will be easy.  I'll be covering  them  in  the  fifth installment.  And the other statements will all fall in  line, as long  
as we remember to KISS.

MULTI-CHARACTER TOKENS
Through out  this  series,   I've   been   carefully  restricting everything  we  do  to  single-character  tokens,  all  
the while assuring  you  that  it wouldn't be difficult to extend to multi-character ones.    I  don't  know if you  
believed me or not ...  I wouldn't  really blame you if you were a  bit  skeptical.    I'll continue  to use  that  
approach in  the  sessions  which  follow, because it helps keep complexity away.    But I'd like to back up those 
assurances, and wrap up this portion  of  the  parser,  by showing you  just  how  easy  that  extension  really is.  
In the process, we'll also provide for embedded white space.  Before you make  the  next  few changes, though,  
save the current version of the parser away under another name.  I have some more uses for it in  the  next  
installment, and we'll be working with the single-character version.

Most compilers separate out the handling of the input stream into a separate module called  the  lexical scanner.  
The idea is that the scanner deals with all the character-by-character  input, and returns the separate units  
(tokens)  of  the  stream.  There may come a time when we'll want  to  do something like that, too, but for  now 
there  is  no  need. We can handle the  multi-character tokens that we need by very slight and  very  local 
modifications to GetName and GetNum.

The usual definition of an identifier is that the first character must be a letter, but the rest can be  alphanumeric  
(letters  or numbers).  **[snip].
                              
Now, we need  to  modify  function  GetName  to  return  a string instead of a character:

**add to Prototypes:
  char *GetName(void);

char *GetName() /* Get an Identifier */
{   char Token[20];
    int ndx=0;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    while(isalnum(Look))
    {   Token[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Token[ndx] = '\0';
    return Token;
}
/*-------------------------------*/

Similarly, modify GetNum to read:

**change in Prototypes:
  char *GetNum(void);

char *GetNum() /* Get a Number */
{   char Value[10];



    int ndx=0;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    return Value;
}
/*-------------------------------*/

Amazingly enough, that   is  virtually all the changes required to the  parser!   The local variable Name  in 
procedures  Ident  and Assignment was originally declared as  "char",  and  must  now be declared ** char  
Name[10 ].  (Clearly,  we  could  make the string length longer if we chose, but most assemblers limit the length 
anyhow.) 

void Assignment()
{   char a_string[20];
    char Name[10];

    strcpy(Name, GetName());
    Match('=');
    Expression();
    strcpy(a_string, "lea  dx, ");
    strcat(a_string, Name);
    EmitLn(a_string);
    EmitLn("mov  [dx], ax");
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{   char a_string[20];
    char Name[10];

    strcpy(Name, GetName());
    if(Look == '(')
    {    Match('(');
         Match(')');
         strcpy(a_string, "call  ");
         strcat(a_string, Name);
         EmitLn(a_string);
    }
    else
    {    strcpy(a_string, "mov  ax, ");
         strcat(a_string, Name);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];
    char Value[10];

    if(Look == '(')



    {    Match('(');
         Expression();
         Match(')');
    }
    else if(isalpha(Look))
    {    Ident();
    }
    else
    {    strcpy(Value, GetNum());
         strcpy(a_string, "mov  ax, ");
         strcat(a_string, Value);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

Make  this  change,  and  then  recompile and test. _NOW_ do  you believe that it's a simple change?

WHITE SPACE
Before we leave this parser for awhile, let's  address  the issue of  white  space.   As it stands now, the parser  
will  barf  (or simply terminate) on a single space  character  embedded anywhere in  the input stream.  That's  
pretty  unfriendly  behavior.    So let's "productionize" the thing  a  bit  by eliminating this last restriction.
The  key  to easy handling of white space is to come  up  with  a simple rule for how the parser should treat the  
input stream, and to  enforce that rule everywhere.  Up  till  now,  because  white space wasn't permitted, we've  
been able  to  assume  that  after  each  parsing  action,  the  lookahead character   Look   contains   the  next 
meaningful  character,  so  we could test it  immediately.    Our design was based upon this principle.
It still sounds like a good rule to me, so  that's  the one we'll use.    This  means  that  every routine that  
advances the  input stream must skip over white space, and leave  the  next non-white character in Look.  
Fortunately,   because   we've  been careful  to  use  GetName,  GetNum,  and  Match   for  most  of  our  input  
processing, it is  only  those  three  routines  (plus  Init) that we need to modify.
Not  surprisingly,  we  start  with  yet  another  new recognizer routine:

**add to Prototypes:
  int IsWhite(char);

int IsWhite(char ch) /* Recognize White Space */
{   int test=0;

    if((ch == ' ') || (ch == TAB))  x = 1;
    return test;
}
/*-------------------------------*/

We  also need a routine that  will  eat  white-space  characters, until it finds a non-white one:

**add to Prototypes:
  void SkipWhite(void);

void SkipWhite() /* Skip Over Leading White Space */
{
    while(IsWhite(Look))
    {   _GetChar();
    }
}
/*-------------------------------*/

Now,  add calls to SkipWhite to Match,  GetName,  and  GetNum  as shown below:



void Match(char x) /* Match a Specific Input Character */
{   char string[6];

    if(Look != x)
    {    strcpy(string, "\" \"");
         string[1] = x;
         Expected(string);
    }
    else
    {    _GetChar();
         SkipWhite();
    }
}
/*-------------------------------*/

char *GetName() /* Get an Identifier */
{   char Token[10];
    int ndx=0;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    while(isalnum(Look))
    {   Token[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Token[ndx] = '\0';
    SkipWhite();
    return Token;
}
/*-------------------------------*/

char *GetNum() /* Get a Number */
{   char Value[10];
    int ndx=0;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    SkipWhite();
    return Value;
}
/*-------------------------------*/

(Note  that  I  rearranged  Match  a  bit,  without changing  the functionality.)

Finally, we need to skip over leading blanks where we  "prime the pump" in Init:

void Init() /* Initialize */
{
    _GetChar();
    SkipWhite();



}
/*-------------------------------*/

Make these changes and recompile the program.  **[snip].  Test the program as  always to make sure it works  
properly.

Since we've made quite  a  few  changes  during this session, I'm reproducing the entire parser below:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* - Constants - */
#define TAB     9
#define BEEP    7

/* - Global Variables - */
  char Look;            /* look ahead character */

/* ---- Function Prototypes ---- */
  void _GetChar(void);   void Error(char *);
  void _Abort(char *);   void Expected(char *);
  void Match(char);   char *GetName(void);
  char *GetNum(void);   void Emit(char *);
  void EmitLn(char *);   void Init(void);
  void Term(void);   void Expression(void);
  void Add(void);    void Subtract(void);
  void Factor(void);   void Multiply(void);
  void Divide(void);    int IsAddop(char);
  void Ident(void);   void Assignment(void);
  void SkipWhite(void);    int IsWhite(char);
/* ---- End Prototypes ---- */

void Assignment()
{   char a_string[20];
    char Name[10];

    strcpy(Name, GetName());
    Match('=');
    Expression();
    strcpy(a_string, "lea  di, ");
    strcat(a_string, Name);
    EmitLn(a_string);
    EmitLn("mov  [di], ax");
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{   char a_string[20];
    char Name[10];

    strcpy(Name, GetName());
    if(Look == '(')
    {    Match('(');
         Match(')');
         strcpy(a_string, "call  ");
         strcat(a_string, Name);
         EmitLn(a_string);
    }



    else
    {    strcpy(a_string, "mov  ax, ");
         strcat(a_string, Name);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

int IsAddop(char ch) /* Recognize an Addop */
{   int rval=0;

    if((ch == '+') || (ch == '-'))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

void Divide() /* Recognize and Translate a Divide */
{
    Match('/');
    Factor();
    EmitLn("pop  bx");
    EmitLn("xchg  ax, bx");
    EmitLn("div  bx");
}
/*-------------------------------*/

void Multiply() /* Recognize and Translate a Multiply */
{
    Match('*');
    Factor();
    EmitLn("pop  bx");
    EmitLn("mul  bx");
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];
    char Value[10];

    if(Look == '(')
    {    Match('(');
         Expression();
         Match(')');
    }
    else if(isalpha(Look))
    {    Ident();
    }
    else
    {    strcpy(Value, GetNum());
         strcpy(a_string, "mov  ax, ");
         strcat(a_string, Value);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */



{
    Match('-');
    Term();
    EmitLn("pop  bx");
    EmitLn("sub  ax, bx");
    EmitLn("neg  ax");
}
/*-------------------------------*/

void Add() /* Recognize and Translate an Add */
{
    Match('+');
    Term();
    EmitLn("pop  bx");
    EmitLn("add  ax, bx");
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
    if(IsAddop(Look))
    {   EmitLn("mov  ax, 0");
    }
    else
    {   Term();
    }
    while(IsAddop(Look))
    {   EmitLn("push  ax");
        switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
    Factor();
    while((Look == '*') || (Look == '/'))
    {    EmitLn("push  ax");
         switch(Look)
         {    case '*':
                  Multiply();
                  break;
              case '/':
                  Divide();
                  break;
              default:
                  break;
         }
    }
}



/*-------------------------------*/

void main() /* Main Program */
{
    Init();
    Assignment();
    if(Look != '\n')
    {   Expected("Newline");
    }
}
/*-------------------------------*/

void Init() /* Initialize */
{
    _GetChar();
    SkipWhite();
}
/*-------------------------------*/

void EmitLn(char *a_string) /* Output a String with Tab and CRLF */
{
    Emit(a_string);
    printf("\n");
}
/*-------------------------------*/

void Emit(char *a_string) /* Output a String with Tab */
{
    printf("\%c %s", TAB, a_string);
}
/*-------------------------------*/

char *GetNum() /* Get a Number */
{   char Value[10];
    int ndx=0;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    SkipWhite();
    return Value;
}
/*-------------------------------*/

char *GetName() /* Get an Identifier */
{   char Token[10];
    int ndx=0;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    while(isalnum(Look))
    {   Token[ndx] = toupper(Look);



        ndx++;
       _GetChar();
    }
    Token[ndx] = '\0';
    SkipWhite();
    return Token;
}
/*-------------------------------*/

void Match(char x) /* Match a Specific Input Character */
{   char string[6];

    if(Look != x)
    {    strcpy(string, "\" \"");
         string[1] = x;
         Expected(string);
    }
    else
    {    _GetChar();
         SkipWhite();
    }
}
/*-------------------------------*/

void Expected(char *string)  /* Report What Was Expected */
{   char a_string[20];

    strcpy(a_string, string);
    strcat(a_string, " Expected");
    _Abort(a_string);
}
/*-------------------------------*/

void _Abort(char *string) /* Report Error and Halt */
{
    Error(string);
    exit(1);
}
/*-------------------------------*/

void Error(char *string) /* Report an Error */
{
    printf("%c\n", BEEP);
    printf("Error: %s.\n", string);
}
/*-------------------------------*/

void _GetChar() /* Read New Character From Input Stream */
{
    Look = getchar();
}
/*-------------------------------*/

int IsWhite(char ch)
{   int test=0;

    if((ch == ' ') || (ch == TAB))  test = 1;
    return test;
}



/*-------------------------------*/

void SkipWhite() /* Skip Over Leading White Space */
{
    while(IsWhite(Look))
    {   _GetChar();
    }
}
/*-------------------------------*/

Now the parser is complete.  It's got every feature we can put in a  one-line "compiler."  Tuck it away in a safe  
place.  Next time we'll move on to a new subject, but we'll still be  talking about expressions for quite awhile. 
Next installment, I plan to talk a bit about interpreters as opposed  to compilers, and show you how the structure  
of the parser changes a bit as we change  what sort of action has to be taken.  The information we pick up there  
will serve  us in good stead later on, even if you have no interest in interpreters.  See you next time.

INTRODUCTION
In the first three installments of this series,  we've  looked at parsing and  compiling math expressions, and 
worked our way gradually and methodically from dealing  with  very  simple one-term, one-character 
"expressions" up through more general ones, finally arriving at a very complete parser that could parse and 
translate complete  assignment  statements,  with  multi-character  tokens, embedded white space, and function 
calls.  This  time,  I'm going to walk you through the process one more time, only with the goal of interpreting 
rather than compiling object code.

Since this is a series on compilers, why should  we  bother  with interpreters?  Simply because I want you to see 
how the nature of the  parser changes as we change the goals.  I also want to unify the concepts of the two 
types of translators, so that you can see not only the differences, but also the similarities.

Consider the assignment statement

               x = 2 * y + 3

In a compiler, we want the target CPU to execute  this assignment at EXECUTION time.  The translator itself  
doesn't  do  any arithmetic ... it only issues the object code that will cause  the CPU to do it when the code is 
executed.  For  the  example above, the compiler would issue code to compute the expression and store the 
results in variable x.

For an interpreter,  on  the  other  hand, no object code is generated.   Instead, the arithmetic is computed 
immediately, as the parsing is going on.  For the example, by the time parsing of the statement is complete, x 
will have a new value.

The approach we've been  taking  in  this  whole series is called "syntax-driven translation."  As you are aware 
by now, the structure of the  parser  is  very  closely  tied to the syntax of the productions we parse.  We  have 
built **C functions that recognize every language  construct.   Associated with each of these constructs (and 
**functions) is  a  corresponding  "action," which does  whatever  makes  sense to do  once  a  construct  has 
been recognized.    In  our  compiler  so far, every  action  involves emitting object code, to be executed later at 
execution time.  In an interpreter, every action  involves  something  to be done immediately.

What I'd like you to see here is that the  layout  ... the structure ... of  the  parser  doesn't  change.  It's only the 
actions that change.   So  if  you  can  write an interpreter for a given language, you can also write a compiler, 
and vice versa.  Yet, as you  will  see,  there  ARE  differences,  and  significant ones. Because the actions are 
different,  the  procedures  that  do the recognizing end up being written differently.    Specifically, in the 
interpreter  the recognizing procedures end up being coded as FUNCTIONS that return numeric values to their 
callers.    None of the parsing routines for our compiler did that.

Our compiler, in fact,  is  what we might call a "pure" compiler. Each time a construct is recognized, the object 
code  is emitted IMMEDIATELY.  (That's one reason the code is not very efficient.) The interpreter we'll be 



building  here is a pure interpreter, in the sense that there is  no  translation,  such  as "tokenizing," performed 
on the source code.  These represent  the  two extremes of translation.  In  the  real  world,  translators are 
rarely so pure, but tend to have bits of each technique.

I can think of  several  examples.    I've already mentioned one: most interpreters, such as Microsoft BASIC,  for 
example, translate the source code (tokenize it) into an  intermediate  form so that it'll be easier to parse real 
time.

Another example is an assembler.  The purpose of an assembler, of course, is to produce object code, and it 
normally does that on a one-to-one basis: one object instruction per line of source code. But almost every 
assembler also permits expressions as arguments. In this case, the expressions  are  always  constant 
expressions, and  so the assembler isn't supposed to  issue  object  code  for them.  Rather,  it  "interprets" the 
expressions and computes the corresponding constant result, which is what it actually emits as object code.

As a matter of fact, we  could  use  a bit of that ourselves. The translator we built in the  previous  installment 
will dutifully spit out object code  for  complicated  expressions,  even though every term in  the  expression  is  a 
constant.  In that case it would be far better if the translator behaved a bit more  like an interpreter, and just 
computed the equivalent constant result.

There is  a concept in compiler theory called "lazy" translation. The  idea is that you typically don't just  emit 
code  at  every action.  In fact, at the extreme you don't emit anything  at all, until  you  absolutely  have to.  To 
accomplish this, the actions associated with the parsing routines  typically  don't  just emit code.  Sometimes 
they  do,  but  often  they  simply  return information back to the caller.  Armed with  such  information, the caller 
can then make a better choice of what to do.

For example, given the statement

               x = x + 3 - 2 - (5 - 4)  ,

our compiler will dutifully spit  out a stream of 18 instructions to load each parameter into  registers,  perform 
the arithmetic, and store the result.  A lazier evaluation  would  recognize that the arithmetic involving constants 
can  be  evaluated  at compile time, and would reduce the expression to

               x = x + 0  .

An  even  lazier  evaluation would then be smart enough to figure out that this is equivalent to

               x = x  ,

which  calls  for  no  action  at  all.   We could reduce 18  instructions to zero!

Note that there is no chance of optimizing this way in our translator as it stands, because every action takes 
place immediately.

Lazy  expression  evaluation  can  produce  significantly  better object code than  we  have  been  able  to  so 
far.  I warn you, though: it complicates the parser code considerably, because each routine now has to make 
decisions as to whether  to  emit  object code or not.  Lazy evaluation is certainly not named that because it's 
easier on the compiler writer!

Since we're operating mainly on  the KISS principle here, I won't go  into much more depth on this subject.  I just 
want you to  be aware  that  you  can get some code optimization by combining the techniques of compiling and 
interpreting.    In  particular, you should know that the parsing  routines  in  a  smarter translator will generally 
return  things  to  their  caller,  and sometimes expect things as  well.    That's  the main reason for going over 
interpretation in this installment.

THE INTERPRETER
OK, now that you know WHY we're going into all this, let's do it. Just to give you practice, we're going to start 
over with  a bare cradle and build up the translator all over again.  This time, of course, we can go a bit faster.



Since we're now going  to  do arithmetic, the first thing we need to do is to change function GetNum, which up till 
now  has always returned a character  (or  string).    Now, it's better for it to return an integer.    MAKE  A 
COPY of the cradle (for goodness's sake, don't change the version  in  Cradle  itself!!)  and modify GetNum as 
follows:**

int GetNum() /* Get a Number */
{   int Value;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    Value = Look - '0';
    _GetChar();
    return Value;
}
/*-------------------------------*/

Now, write the following version of Expression:**

**change Prototypes:
  int Expression(void);

int Expression() /* Parse and Translate an Expression */
{   int value;

    value = GetNum();
    return value;
}
/*-------------------------------*/

Finally, **change the main function to read:

void main() /* Main Program */
{
    Init();
    printf("%d\n", Expression());
}
/*-------------------------------*/

Now compile and test.

All this program  does  is  to  "parse"  and  translate  a single integer  "expression."    As always, you should 
make sure that it does that with the digits 0..9, and gives an  error  message  for anything else.  Shouldn't take 
you very long!

OK, now let's extend this to include addops.    Change Expression to read:**

int Expression() /* Parse and Translate an Expression */
{   int Value;

    if(IsAddop(Look))
    {   Value = 0;
    }
    else
    {   Value = GetNum();
    }
    while(IsAddop(Look))
    {   switch(Look)



        {    case '+':
                 Match('+');
                 Value = Value + GetNum();
                 break;
             case '-':
                 Match('-');
                 Value = Value - GetNum();
                 break;
             default:
                 break;
        }
    }
    return Value;
}
/*-------------------------------*/

The structure of Expression, of  course,  parallels  what  we did before,  so  we  shouldn't have too much 
trouble  debugging  it. There's  been  a  SIGNIFICANT  development, though, hasn't there? Procedures Add and 
Subtract went away!  The reason  is  that  the action to be taken  requires  BOTH arguments of the operation.  I  
could have chosen to retain the procedures and pass into them the value of the expression to date,  which  is 
Value.  But it seemed cleaner to me to  keep  Value as strictly a local variable, which meant that the code for 
Add and Subtract had to be moved in line. This result suggests  that,  while the structure we had developed was 
nice and  clean  for our simple-minded translation scheme, it probably  wouldn't do for use with lazy  evaluation. 
That's  a little tidbit we'll probably want to keep in mind for later.

**as an example try entering: 1+1  or  2-1  or  9+9  or  0-1.

OK,  did the translator work?  
Then let's  take  the  next  step. It's not hard to  figure  out what procedure Term should now look like.  Change 
every call to GetNum in function  Expression  to  a call to Term, and then enter the following form for 
Term:**

int Term() /* Parse and Translate a Math Term */
{   int Value;

    Value = GetNum();
    while((Look == '*') || (Look == '/'))
    {    switch(Look)
         {    case '*':
                  Match('*');
                  Value = Value * GetNum();
                  break;
              case '/':
                  Match('/');
                  Value = Value / GetNum();
                  break;
              default:
                  break;
         }
    }
    return Value;
}
/*-------------------------------*/

Now, **recompile and try it out. **Try:  1+2*3  or  9/3

Don't forget two things: first, we're dealing with integer division, so, for example, 1/3 should come out zero. 
Second, even  though we can output multi-digit results, our input is still restricted to single digits.



That seems like a silly restriction at this point, since  we have already  seen how easily function GetNum can  be 
extended.    So let's go ahead and fix it right now.  The new version is:**

int GetNum() /* Get a Number */
{   int Value=0;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   Value = 10 * Value + Look - '0';
        _GetChar();
    }
    return Value;
}
/*-------------------------------*/

**Compile this version and try:  10*10  or  100+2  or  100/10 .

If you've compiled and  tested  this  version of the interpreter, the  next  step  is to install function Factor,  
complete with parenthesized  expressions.  We'll hold off a  bit  longer  on  the variable  names.  First, change 
the references  to  GetNum,  in function Term, so that they call Factor instead.    Now  code  the following 
version of Factor:**

**to Prototypes:
  int Factor(void);

int Factor() /* Parse and Translate a Math Factor */
{   int value;

    if(Look == '(')
    {   Match('(');
        value = Expression();
        Match(')');
    }
    else
    {   value = GetNum();
    }
    return value;
}
/*-------------------------------*/

**Recompile and try:  (1+2)*3  or  14*(4+3)  or  10*(2*(2+3)) .

That was pretty easy, huh?  We're rapidly closing in on  a useful interpreter.

A LITTLE PHILOSOPHY
Before going any further, there's something I'd like  to  call to your attention.  It's a concept that we've been 
making use  of in all these sessions, but I haven't explicitly mentioned it up till now.  I think it's time, because it's 
a concept so useful, and so powerful,  that  it  makes all the difference  between  a  parser that's trivially easy, 
and one that's too complex to deal with.

In the early days of compiler technology, people  had  a terrible time  figuring  out  how to deal with things like 
operator precedence  ...  the  way  that  multiply  and  divide operators  take precedence over add and subtract,  
etc.  I remember a colleague of some  thirty years ago, and how excited he was to find out how to do it.  The 
technique used involved building two  stacks,    upon which you pushed each operator  or operand.  Associated 
with each operator was a precedence level,  and the rules required that you only actually performed an 
operation  ("reducing"  the  stack) if the precedence level showing on top of the stack was correct.  To make life 



more interesting,  an  operator  like ')' had different precedence levels, depending  upon  whether or not it was 
already on the stack.  You  had to give it one value before you put it on the stack, and another to decide when to 
take it  off.   Just for the experience, I worked all of  this  out for myself a few years ago, and I can tell you that 
it's very tricky.

We haven't  had  to  do  anything like that.  In fact, by now the parsing of an arithmetic statement should seem 
like child's play. How did we get so lucky?  And where did the precedence stacks go?

A similar thing is going on  in  our interpreter above.  You just KNOW that in  order  for  it  to do the computation 
of arithmetic statements (as opposed to the parsing of them), there have  to be numbers pushed onto a stack 
somewhere.  But where is the stack?

Finally,  in compiler textbooks, there are  a  number  of  places where  stacks  and  other structures are 
discussed.  In the other leading parsing method (LR), an explicit stack is used.  In fact, the technique is very 
much  like the old way of doing arithmetic expressions.  Another concept  is  that of a parse tree.  Authors like to 
draw diagrams  of  the  tokens  in a statement, connected into a tree with  operators  at the internal nodes. 
Again, where are the trees and stacks in our technique?  We haven't seen any. The answer in all cases is that 
the structures are  implicit, not explicit.    In  any computer language, there is a stack involved every  time  you 
call  a  subroutine.  Whenever a subroutine  is called, the return address is pushed onto the CPU stack.   At the 
end of the subroutine, the address is popped back off and control is  transferred  there.   In a recursive language 
such as **C, there can also be local data pushed onto the stack, and  it, too, returns when it's needed.

For example,  function  Expression  contains  a  local  parameter called  Value, which it fills by a call to Term. 
Suppose, in its next call to  Term  for  the  second  argument,  that  Term calls Factor, which recursively  calls 
Expression  again.    That "instance" of Expression gets another value for its  copy  of Value. What happens  to 
the  first  Value?    Answer: it's still on the stack, and  will  be  there  again  when  we return from our call 
sequence.

In other words, the reason things look so simple  is  that  we've been making maximum use of the resources of 
the  language.    The hierarchy levels  and  the  parse trees are there, all right, but they're hidden within the 
structure  of  the parser, and they're taken care of by the order with which the various  procedures are called. 
Now that you've seen how we do it, it's probably hard to imagine doing it  any other way.  But I can tell you that it 
took a lot of years for compiler writers to get that smart.  The early compilers were too complex  too  imagine. 
Funny how things get easier with a little practice.

The reason  I've  brought  all  this up is as both a lesson and a warning.  The lesson: things can be easy when 
you do  them right. The warning: take a look at what you're doing.  If, as you branch out on  your  own,  you 
begin to find a real need for a separate stack or tree structure, it may be time to ask yourself if you're looking at 
things the right way.  Maybe you just aren't using the facilities of the language as well as you could be.

The next step is to add variable names.  Now,  though,  we have a slight problem.  For  the  compiler, we had no 
problem in dealing with variable names ... we just issued the names to the assembler and let the rest  of  the 
program take care of allocating storage for  them.  Here, on the other hand, we need to be able to  fetch the 
values of the variables and return them as the  return values of Factor.  We need a storage mechanism for 
these variables.

Back in the early days of personal computing,  Tiny  BASIC lived. It had  a  grand  total  of  26  possible 
variables: one for each letter of the  alphabet.    This  fits nicely with our concept of single-character tokens, so 
we'll  try  the  same  trick.  In the beginning of your  interpreter,  just  after  the  declaration of variable Look, 
insert the line:**

int Table[26];

We also need to initialize the array, so add this procedure:**

**add to Prototypes:
  void InitTable(void);

void InitTable() /* Initialize the Variable Area */



{   int i;

    for(i=0; i<26; i++)
    {   Table[i] = 0;
    }
}
/*-------------------------------*/

You must also insert a call to InitTable, in procedure Init. 
DON'T FORGET to do that, or the results may surprise you!
**
void Init() /* Initialize */
{
    InitTable();
    _GetChar();
    SkipWhite();
}
/*-------------------------------*/

Now that we have an array  of  variables, we can modify Factor to use it.  Since we don't have a way (so far) to 
set the variables, Factor  will always return zero values for  them,  but  let's  go ahead and extend it anyway. 
Here's the new version:**

int Factor() /* Parse and Translate a Math Factor */
{   int value;

    if(Look == '(')
    {   Match('(');
        value = Expression();
        Match(')');
    }
    else if(isalpha(Look))
    {   value = Table[GetName()];
    }
    else
    {   value = GetNum();
    }
    return value;
}
/*-------------------------------*/

**Make these changes as well:

**to Prototypes:
  int GetName(void);

int GetName() /* Get an Identifier */
{   int name;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    name = toupper(Look) - 'A';
    _GetChar();
    return name;
}
/*-------------------------------*/



As always, compile and test this version of the  program.
**Try:  1+2+a  or  a*b  or a*b/2 .

Even though all the variables are now zeros, at least we can correctly parse the complete expressions, as well 
as catch any badly formed expressions.

I suppose you realize the next step: we need to do  an assignment statement so we can  put  something INTO 
the variables.  For now, let's  stick  to  one-liners,  though  we will soon  be  handling multiple statements.
The assignment statement parallels what we did before:**

void Assignment()
{   int Name;

    Name = GetName();
    Match('=');
    Table[Name] = Expression();
}
/*-------------------------------*/

To test this,  I  added  a  temporary write statement in the main program,  **

void main() /* Main Program */
{
    Init();
    Assignment();
    printf("%d\n", Table[0]);

/*    printf("%d\n", Expression());*/
    if(Look != '\n')
    {   Expected("Newline");
    }
}
/*-------------------------------*/

to  print out the value of A.  Then I  tested  it  with various assignments to it.
**Try:  a=1  or  a=100  or  a=-1 .

Of course, an interpretive language that can only accept a single line of program  is not of much value.  So we're 
going to want to handle multiple statements.  This  merely  means  putting  a loop around  the  call  to 
Assignment.  So let's do that now. But what should be the loop exit criterion?  Glad you  asked,  because  it 
brings up a point we've been able to ignore up till now.

One of the most tricky things  to  handle in any translator is to determine when to bail out of  a  given construct 
and go look for something else.  This hasn't been a problem for us so far because we've only allowed for  a 
single kind of construct ... either an expression  or an assignment statement.   When  we  start  adding loops 
and different kinds of statements, you'll find that we have to be very careful that things terminate properly.  If we 
put our interpreter in a loop, we need a way to quit.    Terminating on a newline is no good, because that's what 
sends us back for another line.  We could always let an unrecognized character take us out, but that would 
cause every run to end in an error  message, which certainly seems uncool.

What we need  is  a  termination  character.  I vote for Pascal's ending period ('.').   A  minor  complication  is 
that Turbo ends every normal line  with  TWO characters, the carriage return (CR) and line feed (LF).   At  the 
end  of  each line, we need to eat these characters before processing the next one.   A  natural way to do this 
would  be  with  procedure  Match, except that Match's error  message  prints  the character, which of course for 
the CR and/or  LF won't look so great.  What we need is a special procedure for this, which we'll no doubt be 
using over and over.  Here it is:**

**add to Prototypes:
  void NewLine(void);



void NewLine() /* Recognize and Skip Over a Newline */
{
    if(Look == '\n')
    {   _GetChar();
    }
}
/*-------------------------------*/

Insert this procedure at any convenient spot ... I put  mine just after Match.  Now, rewrite the main program to 
look like this: **

void main() /* Main Program */
{
    Init();
    while(Look != '.')
    {    Assignment();
         NewLine();
    }
}
/*-------------------------------*/

**Compile and test this, try entering:
a=1
a=2+2
a=100/10
. <period>

if it's working okay, the results are not displayed, it just advances to the next input line, until the period is 
entered.

Note that the  test for a CR is now gone, and that there are also no  error tests within NewLine itself.   That's 
OK,  though  ... whatever is left over in terms of bogus characters will be caught at the beginning of the next 
assignment statement.

Well, we now have a functioning interpreter.  It doesn't do  us a lot of  good,  however,  since  we have no way 
to read data in or write it out.  Sure would help to have some I/O!

Let's wrap this session  up,  then,  by  adding the I/O routines. Since we're  sticking to single-character tokens, 
I'll use '?' to stand for a read statement, and  '!'  for a write, with the character  immediately  following  them  to 
be used as  a  one-token "parameter list."  Here are the routines:**

**add to Prototypes:
  void Input(void);
  void Output(void);

void Input() /* Input Routine */
{
    Match('?');
    Table[GetName] = GetNum();
}
/*-------------------------------*/

void Output() /* Output Routine */
{
    Match('!');
    printf("%d\n", Table[GetName()]);

}



/*-------------------------------*/

**Compile and make sure it's working. Try entering:
?a10?b3
c=a*b
!c.

or:
?z1?y2?x3
a=x*y+z
!a.

They aren't very fancy, I admit ... no prompt character on input, for example ... but they get the job done.

The corresponding changes in  the  main  program are shown below. Note that we use the usual  trick  of a case 
statement based upon the current lookahead character, to decide what to do.**

void main() /* Main Program */
{
    Init();
    while(Look != '.')
    {   switch(Look)
        {   case '?':
                 Input();
                 break;
             case '!':
                 Output();
                 break;
             default:
                 Assignment();
                 break;
        }
        NewLine();
    }
}
/*-------------------------------*/

You have now completed a  real, working interpreter.  It's pretty sparse, but it works just like the "big boys."  It  
includes three kinds of program statements  (and  can  tell the difference!), 26 variables,  and  I/O  statements. 
The only things that it lacks, really, are control statements,  subroutines,    and some kind of program editing 
function.  The program editing part, I'm going to pass on.  After all, we're  not  here  to build a product, but to 
learn  things.    The control statements, we'll cover in the next installment, and the subroutines soon  after.  I'm 
anxious to get on with that, so we'll leave the interpreter as it stands.

I hope that by  now  you're convinced that the limitation of single-character names  and the processing of white 
space are easily taken  care  of, as we did in the last session.   This  time,  if you'd like to play around with these 
extensions, be my  guest ... they're  "left as an exercise for the student."    See  you  next time.

INTRODUCTION
In  the  first  four  installments  of  this  series, we've  been concentrating on the parsing of math  expressions 
and assignment statements.  In  this  installment,  we'll  take off on a new and exciting  tangent:  that   of 
parsing  and  translating  control constructs such as IF statements.

This subject is dear to my heart, because it represents a turning point  for  me.    I  had  been  playing  with  the 
parsing  of expressions, just as  we  have  done  in this series, but I still felt that I was a LONG way from being 
able  to  handle a complete language.  After all, REAL  languages have branches and loops and subroutines and 
all that. perhaps you've shared some of the same thoughts.    Awhile  back,  though,  I  had  to  produce  control 



constructs for a structured assembler preprocessor I was writing. Imagine my surprise to  discover  that it was 
far easier than the expression  parsing  I  had  already  been through.   I  remember thinking, "Hey! This is 
EASY!" After we've finished this session, I'll bet you'll be thinking so, too.

THE PLAN
In what follows, we'll be starting over again with a bare cradle, and as we've done twice before now, we'll build 
things up  one at a time.  We'll also  be retaining the concept of single-character tokens that has served us so 
well to date.   This  means that the "code" will look a little funny, with 'i' for IF, 'w'  for WHILE, etc.  But it helps us 
get  the concepts down pat without fussing over  lexical  scanning.    Fear  not  ...  eventually we'll  see 
something looking like "real" code.

I also don't  want  to  have  us  get bogged down in dealing with statements other than branches, such as the 
assignment statements we've  been  working  on.  We've already demonstrated that we can handle them, so 
there's no point carrying them  around  as excess baggage during this exercise.  So what I'll do instead is  to use 
an  anonymous  statement,  "other", to take the place of the non-control statements and serve as a place-holder 
for them.  We have to generate some kind of object code for them  (we're  back  into compiling, not 
interpretation), so for want of anything else I'll just echo the character input.

**Note: begin a new 'Cradle.c' with these functions, from Chapter 3:
/* - Function Prototypes - */
  void _GetChar(void);   void Error(char *);
  void _Abort(char *);   void Expected(char *);
  void Match(char);   char GetName(void);
  void Emit(char *);   void EmitLn(char *);
  void Init(void);   void SkipWhite(void);
   int IsWhite(char);
/* - End Prototypes - */

OK, then, starting with  yet  another  copy  of the cradle, let's define the procedure:**

**Function Prototypes:
  void Other(void);

void Other() /* Recognize and Translate an "Other" */
{   char name[2]= {0,0};

    name[0] = GetName();
    EmitLn(name);
}
/*-------------------------------*/

Now include a call to it in the main program, thus:**

void main() /* Main Program */
{
    Init();
    Other();
}
/*-------------------------------*/

**function GetName should look like this:

char GetName() /* Get an Identifier */
{   char Name;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    Name = toupper(Look);



    _GetChar();
    return Name;
}
/*-------------------------------*/

Run  the program and see what you get.  Not very exciting, is it? But hang in there, it's a start, and things will get 
better.

The first thing we need is the ability to deal with more than one statement, since a single-line branch  is pretty 
limited.  We did that in the last session on interpreting, but this time let's get a little more formal.  Consider the 
following BNF:

          <program> = <block> END

          <block> = [ <statement> ]*

This says that, for our purposes here, a program is defined  as a block, followed by an END statement.  A block, 
in  turn, consists of zero or more statements.  We only have one kind  of statement, so far.

What signals the end of a block?  It's  simply any construct that isn't an "other"  statement.    For  now, that 
means only the END statement.

Armed with these ideas, we can proceed to build  up  our  parser. The code for a program is:**

**add to Prototypes:
  void DoProgram(void);
  void Block(void);

void DoProgram() /* Parse and Translate a Program */
{
    Block();
    if(Look != 'e')
    {   Expected("end");
    }
    EmitLn("END");
}
/*-------------------------------*/

Notice  that  I've  arranged to emit  an  "END"  command  to  the assembler, which sort of  punctuates  the 
output code, and makes sense considering that we're parsing a complete program here.

The code for Block is:**

void Block() /* Recognize and Translate a Statement Block */
{
    while(Look != 'e')
    {   Other();
    }
}
/*-------------------------------*/

(From the form of the procedure, you just KNOW we're going  to be adding to it in a bit!)

OK, enter these routines into your program.  Replace the  call to Other in the main program, by  a  call  to 
DoProgram.  **

void main() /* Main Program */
{
    Init();



    DoProgram();
}
/*-------------------------------*/

Now try it and  see  how  it works.  Well, it's still not  much,  but  we're getting closer.

**Try entering:  abcde

SOME GROUNDWORK
Before we begin to define the various control constructs, we need to  lay a bit more groundwork.  First, a word of 
warning: I won't be using the same syntax  for these constructs as you're familiar with  from Pascal or C.  For 
example, the Pascal syntax for an IF is:

IF <condition> THEN <statement>

(where the statement, of course, may be compound).

The C version is similar:

IF ( <condition> ) <statement>

Instead, I'll be using something that looks more like Ada:

IF <condition> <block> ENDIF

In  other  words,  the IF construct has  a  specific  termination symbol.  This avoids  the  dangling-else of Pascal 
and C and also precludes the need for the brackets {} or begin-end.   The syntax I'm showing you here, in fact, 
is that of the language  KISS that I'll be detailing in  later  installments.   The other constructs will also be  slightly 
different.    That  shouldn't  be  a real problem for you.  Once you see how it's done, you'll realize that it  really 
doesn't  matter  so  much  which  specific syntax  is involved.  Once the syntax is defined, turning it  into  code 
is straightforward.

Now, all of the  constructs  we'll  be  dealing with here involve transfer of control, which at the assembler-
language  level means conditional  and/or  unconditional branches.   For  example,  the simple IF statement

IF <condition> A ENDIF B ....

must get translated into

Branch if NOT condition to L
A

L:    B
...

It's clear, then, that we're going to need  some  more procedures to  help  us  deal with these branches.  I've 
defined two of them below.  Procedure NewLabel generates unique labels.  This is done via the simple 
expedient of calling every label  'Lnn',  where nn is a label number starting from zero.   Procedure  PostLabel 
just outputs the labels at the proper place.
Here are the two routines:**

**add to Prototypes:
  char *NewLabel(void);
  void PostLabel(char *);

char *NewLabel() /* Generate a Unique Label */
{   char S[6];
    static char Label[7];



    strcpy(Label, "L");
    sprintf(S, "%d", LCount);
    strcat(Label, S);
    LCount++;
    return Label;
}
/*-------------------------------*/

void PostLabel(char *string) /* Post a Label To Output */
{
    printf("%s:", string);
}
/*-------------------------------*/

Notice that we've added  a  new  global  variable, LCount, so you need to change the VAR declarations at the 
top of the  program to look like this:**

/* - Global Variables - */
  char Look;            /* look ahead character */
   int LCount;       /* Label Counter */

Also, add the following extra initialization to Init:

   LCount = 0;

(DON'T forget that, or your labels can look really strange!)**

void Init() /* Initialize */
{
    LCount = 0;
    _GetChar();
    SkipWhite();
}
/*-------------------------------*/

At this point I'd also like to show you a  new  kind of notation. If  you  compare  the form of the IF statement 
above with the assembler code that must be produced, you can see  that  there  are certain  actions  associated 
with each of the  keywords  in  the statement:

IF:  First, get the condition and issue the code for it.
      Then, create a unique label and emit a branch if false.

ENDIF: Emit the label.

These actions can be shown very concisely if we write  the syntax this way:

IF
<condition>    { Condition;

L = NewLabel;
Emit(Branch False to L); }

<block>
ENDIF            { PostLabel(L) }

This is an example  of  syntax-directed  translation.  We've been doing it all along ... we've just never written it 
down  this way before.  The stuff in curly brackets represents the ACTIONS to be taken.  The nice part about 
this representation is  that  it  not only shows what  we  have  to  recognize, but also the actions we have to 
perform, and in which  order.   Once we have this syntax, the code almost writes itself.



About  the  only thing left to do is to be a  bit  more  specific about what we mean by "Branch if false."

I'm assuming that there will  be  code  executed  for <condition> that  will  perform  Boolean algebra and 
compute some result.  It should also set the condition flags corresponding to that result. Now, the usual 
convention  for  a Boolean variable is to let 0000 represent "false," and  anything  else (some use FFFF, some 
0001) represent "true."

On the **x86  the  condition  flags  are set whenever any data is ** calculated.  If the  data  is a 0000 
(corresponding to a false condition, remember), the zero flag will be set.   The code for "Branch on zero" is JE or 
JZ.  So for our purposes here,

  JE or JZ   <=> Branch if false
JNE or JNZ <=> Branch if true

It's the nature of the beast that most  of  the  branches  we see will  be  JZ's  ...  we'll  be branching AROUND 
the code  that's supposed to be executed when the condition is true.

THE IF STATEMENT
With that bit of explanation out of the way, we're  finally ready to begin coding the IF-statement parser.  In  fact,  
we've almost already  done  it!   As usual, I'll be using our single-character approach, with the character 'i' for IF, 
and 'e'  for  ENDIF  (as well  as END ... that dual nature causes  no  confusion).    I'll also, for now, skip 
completely  the character for the branch condition, which we still have to define. The code for DoIf is:**

**add to Prototypes:
  void DoIf(void);
  void Condition(void);

void DoIf() /* Recognize and Translate an IF Construct */
{   char Label[7], a_string[20];

    Match('i');
    strcpy(Label, NewLabel());
    Condition();
    strcpy(a_string, "jz  ");
    strcat(a_string, Label);
    EmitLn(a_string);
    Block();
    Match('e');
    PostLabel(Label);
}
/*-------------------------------*/

Add this routine to your program, and change  Block  to reference it as follows:**

void Block() /* Recognize and Translate a Statement Block */
{
    while(Look != 'e')
    {   switch(Look)
        {   case 'i':
                DoIf();
                break;
            default:
                Other();
                break;
        }
    }
}



/*-------------------------------*/

Notice the reference to procedure Condition.    Eventually, we'll write a routine that  can  parse  and  translate 
any Boolean condition we care to give it.  But  that's  a  whole  installment by itself (the next one, in fact).    For 
now, let's just make it a dummy that emits some text.  Write the following routine:**

void Condition() /* Parse and Translate a Boolean Condition */
{ /* This version is a dummy */
    EmitLn("<condition>");
}
/*-------------------------------*/

Insert this procedure in your program just before DoIf.   Now **compile and run the program.  Try a string like:

aibece

As you can see,  the  parser seems to recognize the construct and inserts the object code at the  right  places. 
Now try a set of nested IF's, like

aibicedefe

It's starting to look real, eh?

Now that we  have  the  general  idea  (and the tools such as the notation and the procedures NewLabel and 
PostLabel), it's a piece of cake to extend the parser to include other  constructs.    The first (and also one of the 
trickiest)  is to add the ELSE clause to IF.  The BNF is

IF <condition> <block> [ ELSE <block>] ENDIF

The tricky part arises simply  because there is an optional part, which doesn't occur in the other constructs.

The corresponding output code should be:**

<condition>
JNZ L1
<block>
JMP L2

L1:  <block>
L2:  ...

This leads us to the following syntax-directed translation:**

IF
<condition>    { L1 = NewLabel;

           L2 = NewLabel;
           Emit(JNZ  L1) }

<block>
ELSE             { Emit(JMP  L2);

           PostLabel(L1) }
<block>
ENDIF            { PostLabel(L2) }

Comparing this with the case for an ELSE-less IF gives us  a clue as to how to handle both situations.   The 
code  below  does it.  (Note that I  use  an  'l'  for  the ELSE, since 'e' is otherwise occupied):**

void DoIf() /* Recognize and Translate an IF Construct */
{   char a_string[20];
    char L1[7], L2[7];



    Match('i');
    Condition();
    strcpy(L1, NewLabel());
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    strcpy(L2, L1);
    Block();
    if(Look == 'l')
    {   Match('l');
        strcpy(L2, NewLabel());
        strcpy(a_string, "jmp  ");
        strcat(a_string, L2);
        EmitLn(a_string);
        PostLabel(L1);
        Block();
    }
    Match('e');
    PostLabel(L2);
}
/*-------------------------------*/

**Additionally, make this change to function Block:

void Block() /* Recognize and Translate a Statement Block */
{
    while(strchr("el", Look) == 0)
    {   switch(Look)
        {   case 'i':
                DoIf();
                break;
            default:
                Other();
                break;
        }
    }
}
/*-------------------------------*/

There you have it.  A complete IF parser/translator, in  19 lines of code.
**Compile and give it a try now.  Try something like:

aiblcede

Did it work?  Now, just  to  be  sure we haven't broken the ELSE-less case, try:

aibece

Now try some nested IF's.  Try anything you like,  including some badly formed statements.   Just  remember 
that 'e' is not a legal "other" statement.
**Try: aiblcidlfegehe
    or: aibicldeflgehe
    or: aiblcediflgehe

THE WHILE STATEMENT



The next type of statement should be easy, since we  already have the process  down  pat.  The  syntax  I've 
chosen for the WHILE statement is:

WHILE <condition> <block> ENDWHILE

I know,  I  know,  we  don't  REALLY  need separate kinds of terminators for each construct ... you can see that 
by the fact that in our one-character version, 'e' is used for all of them.  But I also remember  MANY debugging 
sessions in Pascal, trying to track down a wayward END that the compiler obviously thought I meant to put 
somewhere  else.   It's been my experience that specific and unique  keywords,  although  they add to the 
vocabulary  of  the language,  give  a  bit of error-checking that is worth the extra work for the compiler writer.

Now,  consider  what  the  WHILE  should be translated into.   It should be:

L1:  <condition>
JNZ    L2
<block>
JMP L1

L2:

As before, comparing the two representations gives us the actions needed at each point.

WHILE          { L1 = NewLabel;
PostLabel(L1) }

<condition>    { Emit(JNZ  L2) }
<block>
ENDWHILE    { Emit(JMP  L1);

PostLabel(L2) }

The code follows immediately from the syntax:**

**Add to Prototypes:
  void DoWhile(void);

void DoWhile() /* Parse and Translate a WHILE Statement */
{   char a_string[20];
    char L1[7], L2[7];

    Match('w');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    PostLabel(L1);
    Condition();
    strcpy(a_string, "jnz  ");
    strcat(a_string, L2);
    EmitLn(a_string);
    Block();
    Match('e');
    strcpy(a_string, "jmp  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
}
/*-------------------------------*/

Since  we've  got a new statement, we have to add a  call  to  it within function Block:**

void Block() /* Recognize and Translate a Statement Block */
{



    while(strchr("el", Look) == 0)
    {   switch(Look)
        {   case 'i':
                DoIf();
                break;
            case 'w':
                DoWhile();
                break;
            default:
                Other();
                break;
        }
    }
}
/*-------------------------------*/

No other changes are necessary.
OK, **compile and try the new program.  
**Try: awbee

awbicldefege

Note that this  time,  the  <condition> code is INSIDE the upper label, which is just where we wanted it. Try 
some nested loops.  Try some loops within IF's, and some IF's within loops.  If you get  a  bit  confused as to 
what you should type, don't be discouraged:  you  write  bugs in other languages, too, don't you?  It'll look a lot 
more  meaningful  when  we get full keywords.

I hope by now that you're beginning to  get  the  idea  that this really  IS easy.  All we have to do to accomodate 
a new construct is to work out  the  syntax-directed translation of it.  The code almost falls out  from  there,  and 
it doesn't affect any of the other routines.  Once you've gotten the feel of the thing, you'll see that you  can  add 
new  constructs  about as fast as you can dream them up.

THE LOOP STATEMENT
We could stop right here, and  have  a language that works.  It's been  shown  many  times that a high-order 
language with only two constructs, the IF and the WHILE, is sufficient  to  write structured  code.   But we're on 
a roll now, so let's  richen  up  the repertoire a bit.

This construct is even easier, since it has no condition  test at all  ... it's an infinite loop.  What's the point of such 
a loop? Not much, by  itself,  but  later  on  we're going to add a BREAK command,  that  will  give us a way out. 
This makes the language considerably richer than Pascal, which  has  no  break,  and also avoids the funny 
WHILE(1) or WHILE TRUE of C and Pascal.
The syntax is simply

LOOP <block> ENDLOOP

and the syntax-directed translation is:

LOOP           { L = NewLabel;
PostLabel(L) }

<block>
ENDLOOP        { Emit(JMP  L }

The corresponding code is shown below.  Since  I've  already used 'l'  for  the  ELSE, I've used  the  last  letter,  
'p',  as  the "keyword" this time.

**Add to Prototypes:
  void DoLoop(void);

void DoLoop() /* Parse and Translate a LOOP Statement */



{   char Label[7], a_string[20];

    Match('p');
    strcpy(Label, NewLabel());
    PostLabel(Label);
    Block();
    Match('e');
    strcpy(a_string, "jmp  ");
    strcat(a_string, Label);
    EmitLn(a_string);
}
/*-------------------------------*/

When you insert this routine, don't forget to add a line in Block to call it.**

void Block() /* Recognize and Translate a Statement Block */
{
    while(strchr("el", Look) == 0)
    {   switch(Look)
        {   case 'i':
                DoIf();
                break;
            case 'w':
                DoWhile();
                break;
            case 'p':
                DoLoop();
                break;
            default:
                Other();
                break;
        }
    }
}
/*-------------------------------*/

**Compile and try:
apbcdefe
aipbcdfeege

REPEAT-UNTIL
Here's one construct that I lifted right from Pascal.  The syntax is

REPEAT <block> UNTIL <condition>  ,

and the syntax-directed translation is:

REPEAT         { L = NewLabel;
PostLabel(L) }

<block>
UNTIL
<condition>    { Emit(JNZ  L) }

As usual, the code falls out pretty easily:**

**Add to Prototypes:
  void DoRepeat(void);



void DoRepeat() /* Parse and Translate a REPEAT Statement */
{   char Label[7], a_string[20];

    Match('r');
    strcpy(Label, NewLabel());
    PostLabel(Label);
    Block();
    Match('u');
    Condition();
    strcpy(a_string, "jnz  ");
    strcat(a_string, Label);
    EmitLn(a_string);
}
/*-------------------------------*/

As  before, we have to add the call  to  DoRepeat  within  Block. This time, there's a difference, though.  I 
decided  to  use  'r' for REPEAT (naturally), but I also decided to use 'u'  for UNTIL. This means that the 'u' must 
be added to the set of characters in the while-test.  These  are  the  characters  that signal an exit from the 
current  block  ... the "follow" characters, in compiler jargon.**
void Block() /* Recognize and Translate a Statement Block */
{
    while(strchr("elu", Look) == 0)
    {   switch(Look)
        {   case 'i':
                DoIf();
                break;
            case 'w':
                DoWhile();
                break;
            case 'p':
                DoLoop();
                break;
            case 'r':
                DoRepeat();
                break;
            default:
                Other();
                break;
        }
    }
}
/*-------------------------------*/

**Recompile and try:
arbcdufee
aiblcrdufege
aiblcrduee

THE FOR LOOP

The FOR loop  is a very handy one to have around, but it's a bear to translate.  That's not so much because the 
construct itself is hard ... it's only a loop  after  all ... but simply because it's hard to implement  in  assembler 
language.    Once  the  code is figured out, the translation is straightforward enough.

C fans love  the  FOR-loop  of  that language (and, in fact, it's easier to code), but I've chosen instead a syntax 



very  much like the one from good ol' BASIC:

FOR <ident> = <expr1> TO <expr2> <block> ENDFOR

The translation of a FOR loop  can  be just about as difficult as you choose  to  make  it,  depending  upon  the 
way you decide to define  the rules as to how to handle the limits.  Does expr2 get evaluated  every time through 
the loop, for  example,  or  is  it treated as a constant limit?   Do  you always go through the loop at least once, 
as  in  FORTRAN,  or  not? It gets simpler if you adopt the point of view that the construct is equivalent to:

     <ident> = <expr1>
     TEMP = <expr2>
     WHILE <ident> <= TEMP
     <block>
     ENDWHILE

Notice that with this definition of the loop, <block> will not be executed at all if <expr1> is initially larger than 
<expr2>.

The **code needed to do this is trickier than  anything we've done so far.  I had a couple  of  tries  at  it, putting 
both the counter  and  the    upper limit on the stack, both in registers, etc.  I  finally  arrived  at  a hybrid 
arrangement, in which the loop counter is in memory (so that it can be accessed  within the loop), and the upper 
limit is on the stack.  The  translated code came out like this:**

<ident> get name of loop counter
<expr1> get initial value
SUB  <ident>,  1 predecrement it
<expr1> get upper limit
PUSH  AX save it on stack

L1: ADD  <ident>,  1 bump the counter
XOR   AX,  AX clear AX
MOV   AL, <ident> get new value
MOV   SI,  SP get stack pointer
CMP   AX,  [SI] check for range
JGE    L2 skip out if AX > [SI]
<block>
JMP    L1 loop for next pass

L2: ADD    SP,  2 clean up the stack

Wow!    That  seems like a lot of code ...  the  line  containing <block> seems to almost get lost.  But that's the 
best I could do with it.   I guess it helps to keep in mind that it's really only sixteen  words,  after  all.  If  anyone 
else can  optimize  this better, please let me know.

Still, the parser  routine  is  pretty  easy now that we have the code:**

**Add to Prototypes:
  void DoFor(void);
  void Expression(void);

void DoFor() /* Parse and Translate a FOR Statement */
{   char a_string[20];
    char Name, L1[7], L2[7];

    Match('f');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    Name = GetName();
    Match('=');
    Expression();



    strcpy(a_string, "sub   , 1");
    a_string[5] = Name;
    EmitLn(a_string);
    Expression();
    EmitLn("push  ax");
    PostLabel(L1);
    strcpy(a_string, "add   , 1");
    a_string[5] = Name;
    EmitLn(a_string);
    EmitLn("xor  ax, ax");
    strcpy(a_string, "mov  al,  ");
    a_string[9] = Name;
    EmitLn(a_string);
    EmitLn("mov  si, sp");
    EmitLn("cmp  ax, [si]");
    strcpy(a_string, "jge  ");
    strcat(a_string, L2);
    EmitLn(a_string);
    Block();
    Match('e');
    strcpy(a_string, "jmp  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
    EmitLn("add  sp, 2");
}
/*-------------------------------*/

Since we don't have  expressions  in this parser, I used the same trick as for Condition, and wrote the routine**

void Expression() /* Parse and Translate an Expression */
{ /* This version is a dummy */
    EmitLn("<expr>");
}
/*-------------------------------*/

**Once again,  don't  forget  to  add  the  call in Block.**

            case 'f':
                DoFor();
                break;
            default:

**Recompile and give it a try.  Since  we don't have any input for the dummy version of Expression, a typical 
input line would look something like**

afx=bece

Well, it DOES generate a lot of code, doesn't it?    But at least it's the RIGHT code.

THE DO STATEMENT
All this made me wish for a simpler version of the FOR loop.  The reason for all the code  above  is  the  need 
to  have  the loop counter accessible as a variable within the loop.  If all we need is a counting loop to make us 
go through  something  a  specified number of times, but  don't  need  access  to the counter itself, there is a 
much easier solution.  ** For good measure, let's add this construct, too.   This  will  be the last of our loop 
structures.
The syntax and its translation is:**



DO
<expr>       { Emit(SUB  AX,  1);
                    L = NewLabel;
                    PostLabel(L);

    L:         Emit(PUSH  AX) }
<block>
ENDDO      { Emit(POP  AX);
                    Emit(DEC  AX);
                    Emit(JNZ  L);}

That's quite a bit simpler!  The loop will execute  <expr> times. Here's the code:**

**Add to Prototypes:
  void Dodo(void);

void Dodo() /* Parse and Translate a DO Statement */
{   char L1[7], a_string[20];

    Match('d');
    strcpy(L1, NewLabel());
    Expression();
    EmitLn("sub  ax, 1");
    PostLabel(L1);
    EmitLn("push  ax");
    Block();
    EmitLn("pop  ax");
    EmitLn("dec  ax");
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
}
/*-------------------------------*/

**Once again,  don't  forget  to  add  the  call in Block.**

            case 'd':
                Dodo();
                break;
            default:

**Recompile and give it a try using:**

adBLOCKe

I think you'll have to agree, that's a whole lot simpler than the classical FOR.  Still, each construct has its place.

THE BREAK STATEMENT
Earlier I promised you a BREAK statement to accompany LOOP.  This is  one  I'm sort of proud of.  On the face 
of it a  BREAK  seems really  tricky.  My first approach was to just use it as an extra terminator to Block, and 
split all the loops into two parts, just as  I did with the ELSE half of an IF.  That  turns  out  not  to work, though, 
because the BREAK statement is almost certainly not going to show  up at the same level as the loop itself.  
The most likely place for a BREAK is right after an IF, which  would cause it to exit to the IF  construct,  not the 
enclosing loop.  WRONG. The  BREAK  has  to exit the inner LOOP, even if it's nested down into several levels 
of IFs.
                             
My next thought was that I would just store away, in  some global variable, the ending label of the innermost 
loop.    That doesn't work  either, because there may be a break  from  an  inner  loop followed by a break from 



an outer one.  Storing the label for the inner loop would clobber the label for the  outer  one.    So the global 
variable turned into a stack.  Things were starting to get messy.

Then  I  decided  to take my own advice.  Remember  in  the  last session when  I  pointed  out  how  well  the 
implicit stack of a recursive descent parser was  serving  our needs?  I said that if you begin to  see  the  need 
for  an external stack you might be doing  something  wrong.   Well, I was.  It is indeed possible to let the 
recursion built into  our parser take care of everything, and the solution is so simple that it's surprising.

The secret is  to  note  that  every BREAK statement has to occur within a block ... there's no place else for it to 
be.  So all we have  to  do  is to pass into  Block  the  exit  address  of  the innermost loop.  Then it can pass the 
address to the routine that translates the  break instruction.  Since an IF statement doesn't change the loop 
level, procedure DoIf doesn't need to do anything except  pass the label into ITS blocks (both  of  them).    Since 
loops DO change the level,  each  loop  construct  simply ignores whatever label is above it and passes its own 
exit label along.

All  this  is easier to show you than it is to  describe.    I'll demonstrate with the easiest loop, which is LOOP:**

void DoLoop()
{   char L1[7], L2[7], a_string[20];

    Match('p');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    PostLabel(L1);
    Block(L2);
    Match('e');
    strcpy(a_string, "jmp  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
}
/*-------------------------------*/

Notice that DoLoop now has TWO labels, not just one.   The second is to give the BREAK instruction a target to 
jump  to.   If there is no BREAK within  the  loop, we've wasted a label and cluttered up things a bit, but there's 
no harm done.

Note also that Block now has a parameter, which  for  loops  will always be the exit address.  The new version of 
Block is:**

**Change Prototypes:
  void Block(char *);
  void DoIf(char *);
  void DoBreak(char *);

void Block(char *label) /* Recognize and Translate a Statement Block */
{
    while(strchr("elu", Look) == 0)
    {   switch(Look)
        {   case 'i':
                DoIf(label);
                break;
            case 'w':
                DoWhile();
                break;
            case 'p':
                DoLoop();
                break;



            case 'r':
                DoRepeat();
                break;
            case 'f':
                DoFor();
                break;
            case 'd':
                Dodo();
                break;
            case 'b':
                DoBreak(label);
                break;
            default:
                Other();
                break;
        }
    }
}
/*-------------------------------*/

Again,  notice  that  all Block does with the label is to pass it into DoIf and  DoBreak.    The  loop  constructs 
don't  need it, because they are going to pass their own label anyway.

The new version of DoIf is:**

void DoIf(char *label) /* Recognize and Translate an IF Construct */
{   char a_string[20];
    char L1[7], L2[7];

    Match('i');
    Condition();
    strcpy(L1, NewLabel());
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    strcpy(L2, L1);
    Block(label);
    if(Look == 'l')
    {   Match('l');
        strcpy(L2, NewLabel());
        strcpy(a_string, "jmp  ");
        strcat(a_string, L2);
        EmitLn(a_string);
        PostLabel(L1);
        Block(label);
    }
    Match('e');
    PostLabel(L2);
}
/*-------------------------------*/

Here,  the  only  thing  that  changes  is  the addition  of  the parameter to function Block.  An IF statement 
doesn't change the loop  nesting level, so DoIf just passes the  label  along.    No matter how many levels of IF 
nesting we have, the same label will be used.

Now, remember that DoProgram also calls Block, so it now needs to pass it a label.  An  attempt  to  exit the 
outermost block is an error, so DoProgram  passes  a  null  label  which  is  caught by DoBreak:**



void DoBreak(char *label) /* Recognize and Translate a BREAK */
{   char a_string[20];

    Match('b');
    if(label != "")
    {   strcpy(a_string, "jmp  ");
        strcat(a_string, label);
        EmitLn(a_string);
    }
    else
    {   _Abort("No loop to break from");
    }
}
/*-------------------------------*/

void DoProgram() /* Parse and Translate a Program */
{
    Block("");
    if(Look != 'e')
    {   Expected("end");
    }
    EmitLn("END");
}
/*-------------------------------*/

That  ALMOST takes care of everything.  Give it a try, see if you can "break" it <pun>.  Careful, though.  By this 
time  we've used so many letters, it's hard to think of characters that aren't now representing  reserved  words. 
Remember:  before  you  try the program, you're going to have to edit every occurence of Block in the other loop 
constructs to include the new parameter.    Do  it just like I did for LOOP.**

void Dodo() /* Parse and Translate a DO Statement */
{   char L1[7], L2[7], a_string[20];

    Match('d');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    Expression();
    EmitLn("sub  ax, 1");
    PostLabel(L1);
    EmitLn("push  ax");
    Block(L2);
    EmitLn("pop  ax");
    EmitLn("dec  ax");
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
}
/*-------------------------------*/

void DoFor() /* Parse and Translate a FOR Statement */
{   char a_string[20];
    char Name, L1[7], L2[7];

    Match('f');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    Name = GetName();
    Match('=');



    Expression();
    strcpy(a_string, "sub   , 1");
    a_string[5] = Name;
    EmitLn(a_string);
    Expression();
    EmitLn("push  ax");
    PostLabel(L1);
    strcpy(a_string, "add   , 1");
    a_string[5] = Name;
    EmitLn(a_string);
    EmitLn("xor  ax, ax");
    strcpy(a_string, "mov  al,  ");
    a_string[9] = Name;
    EmitLn(a_string);
    EmitLn("mov  si, sp");
    EmitLn("cmp  ax, [si]");
    strcpy(a_string, "jge  ");
    strcat(a_string, L2);
    EmitLn(a_string);
    Block(L2);
    Match('e');
    strcpy(a_string, "jmp  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
    EmitLn("add  sp, 2");
}
/*-------------------------------*/

void DoRepeat() /* Parse and Translate a REPEAT Statement */
{   char L1[7], L2[7], a_string[20];

    Match('r');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    PostLabel(L1);
    Block(L2);
    Match('u');
    Condition();
    strcpy(a_string, "jz   ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
}
/*-------------------------------*/

void DoWhile() /* Parse and Translate a WHILE Statement */
{   char a_string[20];
    char L1[7], L2[7];

    Match('w');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    PostLabel(L1);
    Condition();
    strcpy(a_string, "jz   ");
    strcat(a_string, L2);
    EmitLn(a_string);
    Block(L2);



    Match('e');
    strcpy(a_string, "jmp  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    PostLabel(L2);
}
/*-------------------------------*/

I  said ALMOST above.  There is one slight problem: if you take a hard  look  at  the code generated for DO, 
you'll see that if you break  out  of  this loop, the value of the loop counter is still left on the stack.  We're going to 
have to fix that!  A shame ...that was one  of  our  smaller  routines, but it can't be helped.
Here's a version that doesn't have the problem:**

void Dodo() /* Parse and Translate a DO Statement */
{   char L1[7], L2[7], a_string[20];

    Match('d');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    Expression();
    EmitLn("sub  ax, 1");
    PostLabel(L1);
    EmitLn("push  ax");
    Block(L2);
    EmitLn("pop  ax");
    EmitLn("dec  ax");
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    EmitLn("sub  sp, 2");
    PostLabel(L2);
    EmitLn("add  sp, 2");
}
/*-------------------------------*/

The  two  extra  instructions,  the  SUB and ADD, take care  of leaving the stack in the right shape.
**Recompile and try:

adxyze
adxibeye
awxibeyzqe

                             

CONCLUSION
At this point we have created a number of control  constructs ...a richer set, really, than that provided by almost 
any other programming language.  And,  except  for the FOR loop, it was pretty easy to do.  Even that one was 
tricky only because it's tricky in assembler language.

I'll conclude this session here.  To wrap the thing up with a red ribbon, we really  should  have  a  go  at  having 
real keywords instead of these mickey-mouse  single-character  things.   You've already seen that  the 
extension to multi-character words is not difficult, but in this case it will make a big difference  in the appearance 
of our input code.  I'll save that little bit  for the next installment.  In that installment we'll also address Boolean 
expressions, so we can get rid of the dummy version  of Condition that we've used here.  See you then.

For reference purposes, here is  the  completed  parser  for this session:**

**See file: Cradle.c.v5



NTRODUCTION
In Part V of this series,  we  took a look at control constructs, and developed parsing  routines  to  translate 
them  into object code.    We  ended  up  with  a  nice,  relatively  rich  set  of constructs.

As we left  the  parser,  though,  there  was one big hole in our capabilities:  we  did  not  address  the  issue  of 
the  branch condition.  To fill the void,  I  introduced to you a dummy parse routine called Condition, which only 
served as a place-keeper for the real thing.

One of the things we'll do in this session is  to  plug that hole by expanding Condition into a true 
parser/translator.

THE PLAN
We're going to  approach  this installment a bit differently than any of the others.    In those other installments, 
we started out immediately with experiments  using the  compiler, building up the parsers from  very 
rudimentary  beginnings to their final forms, without spending much time in planning  beforehand. That's called 
coding without specs, and it's usually frowned  upon.   We could get away with it before because the rules of 
arithmetic are pretty well established ...  we  know what a '+' sign is supposed to mean without having to discuss 
it at length.  The same is true for branches and  loops.    But  the  ways  in  which programming languages 
implement  logic  vary quite a bit  from  language  to language.  So before we begin serious coding,  we'd  better 
first make up our minds what it is we want.  And the way to do  that is at the level of the BNF syntax rules (the 
GRAMMAR).

THE GRAMMAR
For some time  now,  we've been implementing BNF syntax equations for arithmetic expressions, without  ever 
actually  writing them down all in one place.  It's time that we did so.  They are:**

     <expression> = <unary op> <term> [<addop> <term>]*
     <term>       = <factor> [<mulop> factor]*
     <factor>     = <integer> | <variable> | ( <expression> )

(Remember, the nice thing about  this grammar is that it enforces the operator precedence hierarchy  that  we 
normally  expect for algebra.)

Actually,  while we're on the subject, I'd  like  to  amend  this grammar a bit right now.   The  way we've handled 
the unary minus is  a  bit  awkward.  I've found that it's better  to  write  the grammar this way:**

  <expression>    = <term> [<addop> <term>]*
  <term>          = <signed factor> [<mulop> factor]*
  <signed factor> = [<addop>] <factor>
  <factor>        = <integer> | <variable> | (<expression>)

This puts the job of handling the unary minus onto  Factor, which is where it really belongs.

This  doesn't  mean  that  you  have  to  go  back and recode the programs you've already written, although 
you're free to do so if you like.  But I will be using the new syntax from now on.

Now, it probably won't come as  a  shock  to you to learn that we can define an analogous grammar for Boolean 
algebra.    A typical set or rules is:**

 <b-expression> = <b-term> [<orop> <b-term>]*
 <b-term>       = <not-factor> [AND <not-factor>]*
 <not-factor>   = [NOT] <b-factor>
 <b-factor>     = <b-literal> | <b-variable> | (<b-expression>)

Notice that in this  grammar,  the  operator  AND is analogous to '*',  and  OR  (and exclusive OR) to '+'.  The 



NOT  operator  is analogous to a unary  minus.    This  hierarchy is not absolutely standard ...  some 
languages,  notably  Ada,  treat  all logical operators  as  having  the same precedence level ... but it seems 
natural.

Notice also the slight difference between the way the NOT and the unary  minus  are  handled.    In  algebra, 
the unary  minus  is considered to go with the whole term, and so  never  appears  but once in a given term. So 
an expression like

                    a * -b
or worse yet,
                    a - -b

is not allowed.  In Boolean algebra, though, the expression

                    a AND NOT b

makes perfect sense, and the syntax shown allows for that.

RELOPS
OK, assuming that you're willing to accept the grammar I've shown here,  we  now  have syntax rules for both 
arithmetic and Boolean algebra.    The  sticky part comes in when we have to combine the two.  Why do we 
have to do that?  Well, the whole subject came up because of the  need  to  process  the  "predicates" 
(conditions) associated with control statements such as the IF.  The predicate is required to have a Boolean 
value; that is, it must evaluate to either TRUE or FALSE.  The branch is  then  taken  or  not taken, depending 
on  that  value.  What we expect to see  going  on  in procedure  Condition,  then,  is  the  evaluation  of  a 
Boolean expression.

But there's more to it than that.  A pure Boolean  expression can indeed be the predicate of a control 
statement ... things like

IF a AND NOT b THEN ....

But more often, we see Boolean algebra show up in such things as

IF (x >= 0) and (x <= 100) THEN ...

Here,  the  two  terms in parens are Boolean expressions, but the individual terms being compared:  x,  0, and 
100,  are NUMERIC in nature.  The RELATIONAL OPERATORS >= and <= are the  catalysts by which the 
Boolean  and  the  arithmetic  ingredients  get merged together.

Now,  in the example above, the terms  being  compared  are  just that:  terms.    However,  in  general  each 
side  can be a math expression.  So we can define a RELATION to be:

     <relation> = <expression> <relop> <expression>  ,

where  the  expressions  we're  talking  about here are  the  old numeric type, and the relops are any of the 
usual symbols

               =, <> (or !=), <, >, <=, and >=

If you think about it a  bit,  you'll agree that, since this kind of predicate has a single Boolean value, TRUE or 
FALSE,  as  its result, it is  really  just  another  kind  of factor.  So we can expand the definition of a Boolean 
factor above to read:

    <b-factor>   =    <b-literal>
                    | <b-variable>
                    | (<b-expression>)
                    | <relation>



THAT's the connection!  The relops and the  relation  they define serve to wed the two kinds of algebra.  It  is 
worth noting that this implies a hierarchy  where  the  arithmetic expression has a HIGHER precedence that  a 
Boolean factor, and therefore than all the  Boolean operators.    If you write out the precedence levels for all the 
operators, you arrive at the following list:

          Level          Syntax Element                 Operator  
             0 factor literal, variable
             1 signed factor unary minus
             2 term *, /
             3 expression +, -
             4 b-factor literal, variable, relop
             5 not-factor NOT
             6 b-term AND
             7 b-expression OR, XOR

If  we're willing to accept that  many  precedence  levels,  this grammar seems reasonable.  Unfortunately,  it 
won't  work!   The grammar may be great in theory,  but  it's  no good at all in the practice of a top-down parser. 
To see the problem,  consider the code fragment:

     IF ((((((A + B + C) < 0 ) AND ....

When the parser is parsing this code, it knows after it  sees the IF token that a Boolean expression is supposed 
to be next.  So it can set up to begin evaluating such an expression.  But the first expression in the example is 
an ARITHMETIC expression, A + B + C. What's worse, at the point that the parser has read this  much of the 
input line:

     IF ((((((A   ,

it  still has no way of knowing which  kind  of  expression  it's dealing  with.  That won't do, because  we  must 
have  different recognizers  for the two cases.  The  situation  can  be  handled without  changing  any  of  our 
definitions, but only  if  we're willing to accept an arbitrary amount of backtracking to work our way out of bad 
guesses.  No compiler  writer  in  his  right mind would agree to that.

What's going  on  here  is  that  the  beauty and elegance of BNF grammar  has  met  face  to  face with the 
realities of  compiler technology.

To  deal  with  this situation, compiler writers have had to make compromises  so  that  a  single  parser can 
handle  the  grammar without backtracking.

FIXING THE GRAMMAR
The  problem  that  we've  encountered  comes   up   because  our definitions of both arithmetic and Boolean 
factors permit the use of   parenthesized  expressions.    Since  the  definitions   are recursive,  we  can  end  up 
with  any  number   of   levels  of parentheses, and the  parser  can't know which kind of expression it's dealing 
with.

The  solution is simple, although it  ends  up  causing  profound changes to our  grammar.    We  can only allow 
parentheses in one kind  of factor.  The way to do  that  varies  considerably  from language  to  language.  This 
is one  place  where  there  is  NO agreement or convention to help us.

When Niklaus Wirth designed Pascal, the desire was  to  limit the number of levels of precedence (fewer parse 
routines, after all). So the OR  and  exclusive  OR  operators are treated just like an Addop  and  processed   at 
the  level  of  a  math  expression. Similarly, the AND is  treated  like  a  Mulop and processed with Term.  The 
precedence levels are

          Level          Syntax Element                 Operator  
              0 factor literal, variable



              1 signed factor unary minus, NOT
              2 term *, /, AND
              3 expression +, -, OR

Notice that there is only ONE set of syntax  rules,  applying  to both  kinds  of  operators.    According to this 
grammar,  then, expressions like**

     x + (y AND NOT z) / 3

are perfectly legal.  And, in  fact,  they  ARE ... as far as the parser  is  concerned.    Pascal  doesn't  allow  the 
mixing  of arithmetic and Boolean variables, and things like this are caught at the SEMANTIC level, when it 
comes time to  generate  code  for them, rather than at the syntax level.

The authors of C took  a  diametrically  opposite  approach: they treat the operators as  different,  and  have 
something much more akin  to our seven levels of precedence.  In fact, in C there are no fewer than 17 levels! 
That's because C also has the operators '=', '+=' and its kin, '<<', '>>', '++', '--', etc.   Ironically, although in C the 
arithmetic  and  Boolean operators are treated separately, the variables are  NOT  ...  there  are no Boolean or 
logical variables in  C,  so  a  Boolean  test can be made on any integer value.

We'll do something that's  sort  of  in-between.   I'm tempted to stick  mostly  with  the Pascal approach, since 
that  seems  the simplest from an implementation point  of view, but it results in some funnies that I never liked 
very much, such as the fact that, in the expression

     IF (c >= 'A') and (c <= 'Z') then ...

the  parens  above  are REQUIRED.  I never understood why before, and  neither my compiler nor any human 
ever  explained  it  very well, either.  But now, we  can  all see that the 'and' operator, having the precedence of 
a multiply, has a higher  one  than  the relational operators, so without  the  parens  the  expression is equivalent 
to

     IF c >= ('A' and c) <= 'Z' then

which doesn't make sense.
In  any  case,  I've  elected  to  separate  the  operators  into different levels, although not as many as in C.

 <b-expression>   = <b-term> [<orop> <b-term>]*
 <b-term>         = <not-factor> [AND <not-factor>]*
 <not-factor>     = [NOT] <b-factor>
 <b-factor>       = <b-literal> | <b-variable> | <relation>
 <relation>       = | <expression> [<relop> <expression]
 <expression>     = <term> [<addop> <term>]*
 <term>           = <signed factor> [<mulop> factor]*
 <signed factor>  = [<addop>] <factor>
 <factor>         = <integer> | <variable> | (<b-expression>)

This grammar  results  in  the  same  set  of seven levels that I showed earlier.  Really, it's almost the same 
grammar ...  I just removed the option of parenthesized b-expressions  as  a possible b-factor, and added the 
relation as a legal form of b-factor.

There is one subtle but crucial difference, which  is  what makes the  whole  thing  work.    Notice  the  square 
brackets  in  the definition  of a relation.  This means that  the  relop  and  the second expression are 
OPTIONAL.

A strange consequence of this grammar (and one shared  by  C)  is that EVERY expression  is  potentially a 
Boolean expression.  The parser will always be looking  for a Boolean expression, but will "settle" for an 
arithmetic one.  To be honest,  that's  going  to slow down the parser, because it has to wade through  more 
layers of procedure calls.  That's  one reason why Pascal compilers tend to compile faster than C compilers.  If  
it's raw speed  you want, stick with the Pascal syntax.



THE PARSER
Now that we've gotten through the decision-making process, we can press on with development of a parser. 
You've done this  with me several times now, so you know  the  drill: we begin with a fresh copy of the cradle, 
and begin  adding  procedures one by one.  So let's do it.

**Begin with file: Cradle6A.c 

We begin, as we did in the arithmetic case, by dealing  only with Boolean literals rather than variables.  This 
gives us a new kind of input token, so we're also going to need a new recognizer, and a  new procedure to read 
instances of that  token  type.    Let's start by defining the two new procedures:**

**Add to Prototypes:
  int IsBoolean(char);
  int GetBoolean(void);
  void BoolExpression(void);

int IsBoolean(char ch) /* Recognize a Boolean Literal */
{   int rval=0;
    char Uch;

    Uch = toupper(ch);
    if((Uch == 'T') || (Uch == 'F'))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

int GetBoolean() /* Get a Boolean Literal */
{   int rval=0;
    char ch;

    if(IsBoolean(Look) == 0)
    {   Expected("Boolean Literal");
    }
    ch = toupper(Look);
    if(ch == 'T')
    {   rval = 1;
    }
    _GetChar();
    return rval;
}
/*-------------------------------*/

Type  these routines into your program.  You  can  test  them  by adding into the main program the print 
statement:**

void main()
{
    Init();                     /* Main Program */
    printf("%d\n", GetBoolean());
}
/*-------------------------------*/

OK, compile the program and test it.



**Try entering: t,  f,  and:     a.

As  usual,  it's  not very impressive so far, but it soon will be.

Now, when we were dealing with numeric data we had to  arrange to generate code to load the values into AX. 
We need to do the same for Boolean data.   The  usual way to encode Boolean variables is to let 0 stand for 
FALSE,  and  some  other value for TRUE.  Many languages, such as C, use an  integer  1  to represent it.  But 
I prefer FFFF hex  (or  -1),  because  a bitwise NOT also becomes a Boolean  NOT.  So now we need to emit 
the right assembler code to load  those  values.    The  first cut at the Boolean  expression parser 
(BoolExpression, of course) is:**

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
    if(IsBoolean(Look) == 0)
    {   Expected("Boolean Literal");
    }
    if(GetBoolean())
    {   EmitLn("mov  ax, -1");
    }
    else
    {   EmitLn("mov  ax, 0");
    }
}
/*-------------------------------*/

Add  this procedure to your parser, and call  it  from  the  main program (replacing the  print  statement you had 
just put there). **

void main() /* Main Program */
{
    Init();
    BoolExpression();
}
/*-------------------------------*/

**OK, recompile the program and test it again:
Try entering: t,  f,  and:     a.

As you  can  see,  we  still don't have much of a parser, but the output code is starting to look more realistic.
Next, of course, we have to expand the definition  of  a  Boolean expression.  We already have the BNF rule:

 <b-expression>   = <b-term> [<orop> <b-term>]*

I prefer the Pascal versions of the "orops",  OR  and  XOR.   But since we are keeping to single-character 
tokens here, I'll encode those with '|' and  '~'.  The  next  version of BoolExpression is almost a direct copy of the 
arithmetic procedure Expression:**

**Add to Prototypes:
  void BoolOr(void);
  void BoolXor(void);
   int IsOrop(char);
  void BoolTerm(void);

void BoolOr() /* Recognize and Translate a Boolean OR */
{
    Match('|');
    BoolTerm();
    EmitLn("pop  bx");



    EmitLn("or   ax, bx");
}
/*-------------------------------*/

void BoolXor() /* Recognize and Translate an Exclusive Or */
{
    Match('~');
    BoolTerm();
    EmitLn("pop  bx");
    EmitLn("xor  ax, bx");
}
/*-------------------------------*/

Note the new recognizer  IsOrop,  which is also a copy, this time of IsAddOp:**

int IsOrop(char ch) /* Recognize a Boolean Orop */
{   int rval=0;

    if((ch == '|') || (ch == '~'))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

OK, rename the old  version  of  BoolExpression to BoolTerm, then enter  the  code  below.**

void BoolExpression() /* Parse and Translate a Boolean Expression */
{   
    BoolTerm();
    while(IsOrop(Look))
    {   EmitLn("push ax");
        switch(Look)
        {   case '|':
                BoolOr();
                break;
            case '~':
                BoolXor();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/

Compile and test this version. 
**Try: |t, |f, ~t, ~f 

At this point, the  output  code  is  starting  to  look pretty good.  Of course, it doesn't make much sense to do a 
lot of Boolean algebra on  constant values, but we'll soon be  expanding  the  types  of Booleans we deal with.

You've  probably  already  guessed  what  the next step  is:  The Boolean version of Term.

**Rename the current function BoolTerm to BoolFactor, and enter the following new version of BoolTerm. 
Note that this is  much simpler than  the  numeric  version,  since  there  is  no equivalent  of division.**



**Add to Prototypes:
  void BoolFactor(void);
  void NotFactor(void);
  void Relation(void);

void BoolTerm() /* Parse and Translate a Boolean Term */
{
    NotFactor();
    while(Look == '&')
    {   EmitLn("push ax");
        Match('&');
        NotFactor();
        EmitLn("pop  bx");
        EmitLn("and  ax, bx");
    }
}
/*-------------------------------*/

Now,  we're  almost  home.  We are  translating  complex  Boolean expressions, although only for constant 
values.  The next step is to allow for the NOT.  Write the following function:**

void NotFactor() /* Parse and Translate a Boolean Factor with NOT */
{
    if(Look == '!')
    {   Match('!');
        BoolFactor();
        EmitLn("xor  ax, -1");
    }
    else
    {   BoolFactor();
    }
}
/*-------------------------------*/

Now try that. **Recompile and test it's working with:**
|!t, ~!t, |t&t, ~t&t, |t~t&t

At this point  the  parser  should  be able to handle any Boolean expression you care to throw at it.  Does it? 
Does it trap badly formed expressions?

If you've  been  following  what  we  did  in the parser for math expressions, you know  that  what  we  did next 
was to expand the definition of a factor to include variables and parens.  We don't have  to do that for the 
Boolean  factor,  because  those  little items get taken care of by the next step.  It  takes  just  a one line addition 
to BoolFactor to take care of relations:

void BoolFactor() /* Parse and Translate a Boolean Factor */
{
    if(IsBoolean(Look))
    {   if(GetBoolean())
        {   EmitLn("mov  ax, -1");
        }
        else
        {   EmitLn("mov  ax, 0");
        }
    }
    else
    {   Relation();



    }
}
/*-------------------------------*/

You  might be wondering when I'm going  to  provide  for  Boolean variables and parenthesized Boolean 
expressions.  The  answer is, I'm NOT!   Remember,  we  took  those out of the grammar earlier. Right now all 
I'm  doing  is  encoding  the grammar we've already agreed  upon.    The compiler itself can't  tell  the  difference 
between a Boolean variable  or  expression  and an arithmetic one ... all of those will be handled by Relation, 
either way.

Of course, it would help to have some code for Relation.  I don't feel comfortable, though,  adding  any  more 
code  without first checking out what we already have.  So for now let's just write a dummy  version  of  Relation 
that  does nothing except  eat  the current character, and write a little message:**

void Relation() /* Parse and Translate a Relation */
{
    printf("\t<Relation>\n");
}
/*-------------------------------*/

OK, key  in  this  code , **recompile and  give  it a try: **
|a, ~a, |t&a, |!a

All the old things should still work ... you should be able to generate the code for ANDs, ORs, and  NOTs.    In 
addition, if you type any alphabetic character you should get a little <Relation>  place-holder, where a  Boolean 
factor should be.  Did you get that?  Fine, then let's move on to the full-blown version of Relation.

To  get  that,  though, there is a bit of groundwork that we must lay first.  Recall that a relation has the form

 <relation>     = | <expression> [<relop> <expression]

Since  we have a new kind of operator, we're also going to need a new Boolean function to  recognize  it.    That 
function is shown below.  Because of the single-character limitation,  I'm sticking to the four operators  that  can 
be encoded with such a character (the "not equals" is encoded by '#').**

**Add to Prototypes:
  int IsRelop(char);

int IsRelop(char ch) /* Recognize a Relop */
{   int rval=0;

    if(strchr("=#<>", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

Now, recall  that  we're  using  a zero or a -1 in register AX to represent  a Boolean value, and also  that  the 
loop  constructs expect the flags to be set to correspond.**

Since the loop constructs operate only on the flags, it  would be nice (and also quite  efficient)  just to set up 
those flags, and not load  anything  into  AX  at all.  This would be fine for the loops  and  branches,  but 
remember that the relation can be used ANYWHERE a Boolean factor could be  used.   We may be storing its 
result to a Boolean variable.  Since we can't know at  this point how the result is going to be used, we must allow 
for BOTH cases.



Comparing numeric data  is  easy  enough  ...  the  **x86  has an operation  for  that ... but it sets  the  flags, 
not  a  value. What's more,  the  flags  will  always  be  set the same (zero if equal, etc.), while we need the zero 
flag set differently for the each of the different relops.

**The solution is to set a byte value to 0000 or FFFF depending upon the  result  of  the  specified   condition. 
If  we  make  the destination byte to be AH, we get the Boolean value needed.
**And,  we have to do one last step, which is to test AH and set the flags to match it. It must seem to be a trip 
around the moon to get what we want: we first perform the test, then test the flags to set data  into AH, then test  
AH to set the flags again.  It  is  sort of roundabout, but it's the most straightforward way to get the flags right.

I  might  mention  here that this area is, in my opinion, the one that represents the biggest difference between 
the  efficiency of hand-coded assembler language and  compiler-generated  code.   We have  seen  already 
that  we  lose   efficiency   in  arithmetic operations, although later I plan to show you how to improve that a  bit. 
We've also seen that the control constructs themselves can be done quite efficiently  ... it's usually very difficult 
to improve  on  the  code generated for an  IF  or  a  WHILE.    But virtually every compiler I've ever seen 
generates  terrible code, compared to assembler, for the computation of a Boolean function, and particularly for 
relations.    The  reason  is just what I've hinted at above.  When I'm writing code in assembler, I  go ahead and 
perform the test the most convenient way I can, and  then set up the branch so that it goes the way it should. 
In  effect, I "tailor"  every  branch  to the situation.  The compiler can't do that (practically), and it also can't know 
that we don't  want to store the result of the test as a Boolean variable.    So it must generate  the  code  in a 
very strict order, and it often ends up loading  the  result  as  a  Boolean  that  never gets  used  for anything.

In  any  case,  we're now ready to look at the code for Relation. It's shown below with its companion functions:**
**Note: the following functions use the 386 mnemonics  SET[x],  where [x] is: [E]qual, [NE]qual,   [L]ess, 
[G]reater. There is no one single comparable x88/x86/286 instruction.

**Add to Prototypes:
  void Equals(void);
  void NotEquals(void);
  void Less(void);
  void Greater(void);

void Equals() /* Recognize and Translate a Relational "Equals" */
{
    Match('=');
    Expression();
    EmitLn("pop  bx");
    EmitLn("cmp  ax, bx");
    EmitLn("sete al");
    EmitLn("neg  al");
}
/*-------------------------------*/

void NotEquals() /*Recognize and Translate a Relational "Not Equals"*/
{
    Match('#');
    Expression();
    EmitLn("pop  bx");
    EmitLn("cmp  ax, bx");
    EmitLn("setne al");
    EmitLn("neg  al");
}
/*-------------------------------*/

void Less() /* Recognize and Translate a Relational "Less Than" */
{
    Match('<');
    Expression();



    EmitLn("pop  bx");
    EmitLn("cmp  ax, bx");
    EmitLn("setl al");
    EmitLn("neg  al");
}
/*-------------------------------*/

void Greater() /*Recognize and Translate a Relational "Greater Than"*/
{
    Match('>');
    Expression();
    EmitLn("pop  bx");
    EmitLn("cmp  ax, bx");
    EmitLn("setg al");
    EmitLn("neg  al");
}
/*-------------------------------*/

void Relation() /* Parse and Translate a Relation */
{
    Expression();
    if(IsRelop(Look))
    {   EmitLn("push ax");
        switch(Look)
        {   case '=':
                Equals();
                break;
            case '#':
                NotEquals();
                break;
            case '<':
                Less();
                break;
            case '>':
                Greater();
                break;
            default:
                break;
        }
        EmitLn("test ax, 11111111b");
    }
}
/*-------------------------------*/

Now, that call to  Expression  looks familiar!  Here is where the editor of your system comes in handy.  We have 
already generated code  for  Expression  and its buddies in previous sessions.  You can  copy  them  into your 
file now.  Remember to use the single-character  versions.  Just to be  certain,  I've  duplicated  the arithmetic 
procedures below.  If  you're  observant,  you'll also see that I've changed them a little to make  them 
correspond  to the latest version of the syntax.  This change is  NOT necessary, so  you  may  prefer  to  hold 
off  on  that  until you're  sure everything is working.**

**Add to Prototypes:
  void Term(void);   void Expression(void);
  void SignedFactor(void);

void Term() /* Parse and Translate a Math Term */
{
    SignedFactor();



    while((Look == '*') || (Look == '/'))
    {    EmitLn("push  ax");
         switch(Look)
         {    case '*':
                  Multiply();
                  break;
              case '/':
                  Divide();
                  break;
              default:
                  break;
         }
    }
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
    Term();
    while(IsAddop(Look))
    {   EmitLn("push  ax");
        switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/

void SignedFactor() /* Parse and Translate the First Math Factor */
{   char iGetNum, a_string[20];

    if(Look == '+')
    {   _GetChar();
    }
    if(Look == '-')
    {   _GetChar();
        if(isdigit(Look))
        {   iGetNum = GetNum();
            strcpy(a_string, "mov  ax, - ");
            a_string[10] = iGetNum;
            EmitLn(a_string);
        }
        else
        {   Factor();
            EmitLn("neg  ax");
        }
    }
    else
    {   Factor();
    }
}
/*-------------------------------*/



There you have it ... a parser that can  handle  both  arithmetic AND Boolean algebra, and things  that combine 
the two through the use of relops.   I suggest you file away a copy of this parser in a safe place, **( save it as 
"Cradle6B.c" ), for future reference, because in our next step we're going to be chopping it up.

MERGING WITH CONTROL CONSTRUCTS
At this point, let's go back to the file we had  previously built, **( "Cradle.c.v5" ), that parses control  constructs. 
Remember  those  little dummy functions called Condition and  Expression?    Now you know what goes in their 
places!

I  warn you, you're going to have to  do  some  creative  editing here, so take your time and get it right.  **What 
you need to do is to copy all of  the  functions listed below  from Cradle.c.v5 into  Cradle6A.c :**

**Add to Prototypes:
  void DoProgram(void);   void Block(char *);
  void DoIf(char *);   char *NewLabel(void);
  void PostLabel(char *);   void DoWhile(void);
  void DoLoop(void);   void DoRepeat(void);
  void DoFor(void);   void Dodo(void);
  void DoBreak(char *);

Next, change every call  to  Condition  to  refer  to  BoolExpression  instead. **
That should do it.**
 

ADDING ASSIGNMENTS

As long as we're this far,  and  we already have the routines for expressions in place, we might  as well replace 
the "blocks" with real assignment statements.    We've already done that before, so it won't be too hard.   Before 
taking that step, though, we need to fix something else.
We're soon going to find  that the one-line "programs" that we're having to write here will really cramp our style. 
At  the moment we  have  no  cure for that, because our parser doesn't recognize the end-of-line characters, the 
carriage return (CR) and the line feed (LF).  So before going any further let's plug that hole.

There are  a  couple  of  ways to deal with the CR/LFs.  One (the C/Unix approach) is just to  treat them as 
additional white space characters  and  ignore  them.    That's actually not such a  bad approach,  but  it  does 
sort  of produce funny results for  our parser as  it  stands  now.   If it were reading its input from a source file as 
any  self-respecting  REAL  compiler  does, there would be no problem.  But we're reading input from  the 
keyboard, and we're sort of conditioned  to expect something to happen when we hit the return key.  It won't, if 
we just skip over the CR and LF  (try it).  So I'm going to use a different method here, which is NOT necessarily 
the  best  approach in the long run.  Consider it a temporary kludge until we're further along.

Instead of skipping the CR/LF,  We'll let the parser go ahead and catch them, then  introduce  a  special 
procedure,  analogous to SkipWhite, that skips them only in specified "legal" spots.

Here's the procedure:**

**Add to Prototypes:
  void Fin(void);
  void Assignment(void);

void Fin() /* Skip a CRLF */
{
    if(Look == '\n')
    {   _GetChar();
    }
}



/*-------------------------------*/

**Now, add two calls to Fin and a call to Assignment in function Block, like this:**

void Block(char *label) /* Recognize and Translate a Statement Block */
{
    while(strchr("elu", Look) == 0)
    {   Fin(); /* <----- Fin  */
        switch(Look)
        {   case 'i':
                DoIf(label);
                break;
            case 'w':
                DoWhile();
                break;
            case 'p':
                DoLoop();
                break;
            case 'r':
                DoRepeat();
                break;
            case 'f':
                DoFor();
                break;
            case 'd':
                Dodo();
                break;
            case 'b':
                DoBreak(label);
                break;
            default:
                Assignment(); /* <---- change this */
                break;
        }
        Fin(); /* <----- Fin  */

    }
}
/*-------------------------------*/

Now, you'll find that you  can use multiple-line "programs."  The only restriction is that you can't separate an IF 
or  WHILE token from its predicate.

Now we're ready to include  the  assignment  statements.   Simply change  that  call  to  Other  in  function 
Block  to a call to Assignment, and add  the  following procedure, copied from one of our  earlier  programs. 
Note   that   Assignment   now  calls BoolExpression, so that we can assign Boolean variables.**

void Assignment() /* Parse and Translate an Assignment Statement */
{   char Name, a_string[20] = {0,0};

    Name = GetName();
    if(isalpha(Look))
    {   a_string[0] = Name;
        EmitLn(a_string);
    }
    else
    {   Match('=');
        BoolExpression();



        strcpy(a_string, "lea  di,  ");
        a_string[9] = Name;
        EmitLn(a_string);
        EmitLn("mov  [di], ax");
    }
}
/*-------------------------------*/

**Compile  the  resulting program and give it  a  try.    Since  we haven't  used  this  program in a while, don't 
forget that we used single-character tokens for IF,  WHILE,  etc.   Also don't forget that any letter not a keyword 
just gets echoed as a block.
**Try : x=2*y+3/4e x=2*(y+3)/4e x=2*y+3/(4*z)e

x=B*B+4*a*ce

**Try calling functions: a=Q()B=W()x=a+Be

**Now try:
iB<cB=cee which stands for "IF B<c, B=c EndIF: End"
iB<cB=clB=0ee which stands for "IF B<c, B=c Else B=0 EndIF: End"
wa>Ba=a-1ee which stands for "While a>B a=a-1 EndWhile: End"
pa=a+1ia=9beee which stands for "Loop: a=a+1, IF a=9 Break: EndIF: EndLoop: End"

ra=a+1ua=9B=ae which stands for "Repeat: a=a+1 Until:a=9: B=a: End"
fa=09B=aee which stands for "FOR a=0 to 9:NEXT: B=a: EndFOR: End"
a=9daB=B+1e which stands for "a=9:Do a[loops], B=B+1: End"

What do you think?  Did it work?  Try some others.

With  that change, you should now be  able  to  write  reasonably realistic-looking  programs,  subject  only  to 
our limitation on single-character tokens.  My original intention was to get rid of that limitation for you, too. 
However, that's going to require a fairly major change to what we've  done  so  far.  We need a true lexical 
scanner, and that requires some structural changes.  They are not BIG changes that require us to  throw  away 
all  of what we've done so far ... with care, it can be done with very minimal changes, in fact.  But it does require 
that care.

This installment  has already gotten pretty long, and it contains some pretty heavy stuff, so I've decided to leave 
that step until next  time, when you've had a little more  time  to  digest  what we've done and are ready to start  
fresh.

In the next installment, then,  we'll build a lexical scanner and eliminate the single-character  barrier  once and 
for all.  We'll also write our first complete  compiler, based on what we've done in this session.  See you then.

INTRODUCTION
In the last installment, I left you with a  compiler  that  would ALMOST  work,  except  that  we  were  still  limited 
to  single-character tokens.  The purpose of  this  session is to get rid of that restriction, once and for all.  This 
means that we must deal with the concept of the lexical scanner.

Maybe I should mention why we  need  a lexical scanner at all ...after all, we've been able to manage all right 
without  one,  up till now, even when we provided for multi-character tokens.

The ONLY reason, really, has to do with keywords.  It's a fact of computer life that the syntax for a keyword has 
the same  form as that  for  any  other identifier.  We can't tell until we get the complete word whether or not it  
IS  a keyword.  For example, the variable IFILE and the keyword IF look just alike, until  you get to the third 
character.  In the examples to date, we  were always able to make  a  decision  based  upon the first character 
of the token, but that's  no  longer possible when keywords are present. We  need to know that a given string is 
a keyword BEFORE we begin to process it.  And that's why we need a scanner.



In the last session, I also promised that  we  would  be  able to provide for normal tokens  without  making 
wholesale  changes to what we have  already done.  I didn't lie ... we can, as you will see later.  But every time I 
set out to install these elements of the software into  the  parser  we  have already built, I had bad feelings about 
it.  The whole thing felt entirely too much like a band-aid.  I finally figured out what was causing the  problem: I 
was installing lexical scanning software without first explaining to you what scanning is all about, and what the 
alternatives are. Up  till  now, I have studiously avoided  giving  you  a  lot  of theory,  and  certainly  not 
alternatives.    I  generally don't respond well to the textbooks that give you twenty-five different ways  to do 
something, but no clue as to which way best fits your needs.  I've tried to avoid that pitfall by just showing  you 
ONE method, that WORKS.

But  this is an important area.  While  the  lexical  scanner  is hardly the most  exciting  part  of  a compiler, it 
often has the most  profound  effect  on  the  general  "look  & feel"  of  the language, since after all it's the  part  
closest to the user.  I have a particular structure in mind for the scanner  to  be  used with  KISS.    It fits the look 
&  feel  that  I  want  for  that language.  But it may not work at  all  for  the  language YOU'RE cooking  up,  so 
in this one case I feel that it's important for you to know your options.

So I'm going to depart, again, from my  usual  format.    In this session we'll be getting  much  deeper  than 
usual into the basic theory of languages and  grammars.    I'll  also be talking about areas OTHER than 
compilers in  which  lexical  scanning  plays an important role.  Finally, I will show you  some  alternatives for the 
structure of the lexical scanner.  Then, and only  then, will we get back to our parser  from  the last installment. 
Bear with me ... I think you'll find it's worth the wait.    In fact, since scanners have many applications  outside  of 
compilers,  you may well find this to be the most useful session for you.

LEXICAL SCANNING
Lexical scanning is the process of scanning the  stream  of input characters and separating it  into  strings 
called tokens.  Most compiler  texts  start  here,  and  devote  several  chapters  to discussing various ways to 
build scanners.  This approach has its place, but as you have already  seen,  there  is a lot you can do without 
ever even addressing the issue, and in  fact  the scanner we'll  end  up with here won't look  much  like  what 
the  texts describe.  The reason?    Compiler  theory and, consequently, the programs resulting from it, must 
deal with the most general kind of parsing rules.  We don't.  In the real  world,  it is possible to specify the 
language syntax in such a way that a pretty simple scanner will suffice.  And as always, KISS is our motto.

Typically, lexical scanning is  done  in  a  separate part of the compiler, so that the parser per  se  sees only a 
stream of input tokens.  Now, theoretically it  is not necessary to separate this function from the rest of the 
parser.  There is  only  one set of syntax equations that define the  whole language, so in theory we could write 
the whole parser in one module.

Why  the  separation?      The  answer  has  both  practical  and theoretical bases.

In  1956,  Noam  Chomsky  defined  the  "Chomsky   Hierarchy"  of  grammars.  They are:

     o Type 0:  Unrestricted (e.g., English)

     o Type 1:  Context-Sensitive

     o Type 2:  Context-Free

     o Type 3:  Regular

A few features of the typical programming  language (particularly the older ones, such as FORTRAN) are Type 
1,  but  for  the most part  all  modern  languages can be described using only the last two types, and those are 
all we'll be dealing with here.

The  neat  part about these two types  is  that  there  are  very specific ways to parse them.  It has been shown 
that  any regular grammar can be parsed using a particular form of abstract machine called the state machine 
(finite  automaton).    We  have already implemented state machines in some of our recognizers.

Similarly, Type 2 (context-free) grammars  can  always  be parsed using  a  push-down  automaton (a state 



machine  augmented  by  a stack).  We have  also  implemented  these  machines.  Instead of implementing  a 
literal stack, we have  relied  on  the  built-in stack associated with recursive coding to do the job, and that in fact 
is the preferred approach for top-down parsing.

Now, it happens that in  real, practical grammars, the parts that qualify as  regular expressions tend to be the 
lower-level parts, such as the definition of an identifier:

<ident> = <letter> [ <letter> | <digit> ]*

Since it takes a different kind of abstract machine to  parse the two  types  of  grammars, it makes sense to 
separate these lower-level functions into  a  separate  module,  the  lexical scanner, which is built around the 
idea of a state machine. The idea is to use the simplest parsing technique needed for the job.

There is another, more practical  reason  for  separating scanner from  parser.   We like to think of the input 
source  file  as  a stream  of characters, which we process  right  to  left  without backtracking.  In practice that 
isn't  possible.    Almost every language has certain keywords such as  IF,  WHILE, and END.  As I mentioned 
earlier,    we  can't  really  know  whether  a  given character string is a keyword, until we've reached the end of 
it, as defined by a space or other delimiter.  So  in  that sense, we MUST  save  the  string long enough to find 
out whether we have a keyword or not.  That's a limited form of backtracking.

So the structure of a conventional compiler involves splitting up the functions of  the  lower-level and higher-level 
parsing.  The lexical  scanner  deals  with  things  at  the  character  level, collecting characters into strings, etc.,  
and passing  them along to the parser proper as indivisible tokens.  It's also considered normal to let the 
scanner have the job of identifying keywords.

STATE MACHINES AND ALTERNATIVES
I  mentioned  that  the regular expressions can be parsed using a state machine.   In  most  compiler  texts,  and 
indeed  in most compilers as well, you will find this taken literally.   There is typically  a  real  implementation  of 
the  state  machine, with integers used to define the current state, and a table of actions to  take   for  each 
combination  of  current  state  and  input character.  If you  write  a compiler front end using the popular Unix 
tools LEX and YACC, that's  what  you'll get.  The output of LEX is a state machine implemented in C, plus a 
table  of actions corresponding to the input grammar given to LEX.  The YACC output is  similar  ...  a canned 
table-driven parser,  plus  the  table corresponding to the language syntax.

That  is  not  the  only  choice,  though.     In   our  previous installments, you have seen over and over that it is 
possible to implement  parsers  without  dealing  specifically  with  tables, stacks, or state variables.    In fact, in 
Installment V I warned you that if you  find  yourself needing these things you might be doing something wrong 
**.  There are basically two ways to define a state machine's state: explicitly, with  a  state number or code, and 
implicitly, simply by virtue of the fact that I'm at a  certain  place in the code  (if  it's  Tuesday,  this  must be 
Belgium).  We've  relied heavily on the implicit approaches  before,  and  I  think you'll find that they work well 
here, too.

In practice, it may not even be necessary to HAVE  a well-defined lexical scanner.  This isn't our first experience 
at dealing with multi-character tokens.   In  Installment  III,  we  extended our parser to provide  for  them,  and 
we didn't even NEED a lexical scanner.    That  was  because  in that narrow context, we  could always tell, just 
by  looking at the single lookahead character, whether  we  were  dealing  with  a  number,  a variable,  or  an 
operator.  In effect, we  built  a  distributed  lexical scanner, using procedures GetName and GetNum.

With keywords present,  we  can't know anymore what we're dealing with, until the entire token is  read.    This 
leads us to a more localized  scanner; although,  as you will see,  the  idea  of  a distributed scanner still has its 
merits.

SOME EXPERIMENTS IN SCANNING
Before  getting  back  to our compiler,  it  will  be  useful  to experiment a bit with the general concepts.

Let's  begin with the two definitions most  often  seen  in  real programming languages:



<ident> = <letter> [ <letter> | <digit> ]*
<number = [<digit>]+

(Remember, the '*' indicates zero or more occurences of the terms in brackets, and the '+', one or more.)

We  have already dealt with similar  items  in  Installment  III. Let's begin (as usual) with a bare cradle.  Not 
surprisingly, we are going to need a new recognizer:**

**Begin with file: Cradle7A.c

Using this let's write the following two routines, which are very similar to those we've used before:**

**Add to Prototypes:
  char *GetName(void);
  char *GetNum(void);

char *GetName() /* Get an Identifier */
{   static char x[9];
    int ndx=0;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    while((isalnum(Look)) && (ndx < 8))
    {   x[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    x[ndx] = '\0';
    return x;
}
/*-------------------------------*/

char *GetNum() /* Get a Number */
{   static char x[17];
    int ndx=0;

    x[0] = '\0';
    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while((isdigit(Look)) && (ndx < 16))
    {   x[ndx] = Look;
        ndx++;
        _GetChar();
    }
    x[ndx] = '\0';
    return x;
}
/*-------------------------------*/

(Notice  that this version of GetNum returns  a  string,  not  an integer as before.)

You  can  easily  verify that these routines work by calling them from the main program, as in **

void main() /* Main Program */
{
    Init();



    printf("%s\n", GetName());
}
/*-------------------------------*/

This  program  will  print any legal name typed in (maximum eight characters, since that's what we told 
GetName).   It  will reject anything else.

Test the other routine similarly.**

void main() /* Main Program */
{
    Init();
    printf("%s\n", GetNum());
}
/*-------------------------------*/

WHITE SPACE
We  also  have  dealt with embedded white space before, using the two  routines  IsWhite  and  SkipWhite. 
Make  sure that  these routines are in your  current  version of the cradle, and add the the line**
     SkipWhite();

**ie:
    ...
    x[ndx] = '\0';
    SkipWhite();         <----- here
    return x;
}
/*-------------------------------*/

at the end of both GetName and GetNum, (just above the: return x;).

Now, let's define the new procedure:**

**Add to Prototypes:
  char *Scan(void);

char *Scan() /* Lexical Scanner */
{   static char Value[20];

    if(isalpha(Look))
    {   strcpy(Value, GetName());
    }
    else if(isdigit(Look))
    {   strcpy(Value, GetNum());
    }
    else
    {   Value[0] = Look;
        Value[1] = '\0';
        _GetChar();
    }
    SkipWhite();
    return Value;
}
/*-------------------------------*/



We can call this from the new main program:**

void main() /* Main Program */
{   char Token[20] = {0};

    Init();
    while(strcmp(Token, "\n") != 0)
    {   strcpy(Token, Scan());
        printf("%s\n", Token);
    }
}
/*-------------------------------*/

**Now,  compile and run the program.  **Try:
  test  test  test <cr>

Note how the  input  string  is,  indeed, separated into distinct tokens.

STATE MACHINES
For  the  record,  a  parse  routine  like  GetName  does  indeed implement a state machine.  The state is 
implicit in  the current position in the code.  A very useful trick for visualizing what's going on is  the  syntax 
diagram,  or  "railroad-track" diagram. It's a little difficult to draw  one  in this medium, so I'll use them very 
sparingly, but  the  figure  below  should give you the idea:

           |-----> Other---------------------------> Error
           |
   Start -------> Letter ---------------> Other -----> Finish
           ^                        V
           |                        |
           |<----- Letter <---------|
           |                        |
           |<----- Digit  <----------

As  you  can  see,  this  diagram  shows  how  the logic flows as characters  are  read.    Things  begin, of 
course, in the  start state, and end when  a  character  other  than an alphanumeric is found.  If  the  first 
character  is not alpha, an error occurs. Otherwise the machine will continue looping until the terminating 
delimiter is found.

Note  that at any point in the flow,  our  position  is  entirely dependent on the past  history  of the input 
characters.  At that point, the action to be taken depends only on the  current state, plus the current input 
character.  That's what make this  a state machine.

Because of the difficulty of drawing  railroad-track  diagrams in this medium, I'll continue to  stick to syntax 
equations from now on.  But I highly recommend the diagrams to you for  anything you do that involves parsing. 
After a little practice you  can begin to  see  how  to  write  a  parser  directly from  the  diagrams. Parallel paths 
get coded into guarded actions (guarded by IF's or CASE statements),  serial  paths  into  sequential  calls.   It's 
almost like working from a schematic.

We didn't even discuss SkipWhite, which  was  introduced earlier, but it also is a simple state machine, as is 
GetNum.  So is their parent procedure, Scan.  Little machines make big machines.

The neat thing that I'd like  you  to note is how painlessly this implicit approach creates these  state  machines. 
I personally prefer it a lot over the table-driven approach.  It  also results is a small, tight, and fast scanner.



NEWLINES
Moving right along, let's modify  our scanner to handle more than one line.  As I mentioned last time, the most 
straightforward way to  do  this  is to simply treat the newline characters, carriage return  and line feed, as white 
space.  This is, in fact, the way the  C  standard  library  routine,  iswhite, works.   We  didn't actually try this 
before.  I'd like to do it now, so you can get a feel for the results.
To do this, simply modify the single executable  line  of IsWhite to read:**

int IsWhite(char ch)
{   int test=0;

    if(strchr(" \t\n", ch))
    {   test = 1;
    }
    return test;
}
/*-------------------------------*/

We need to give the main  program  a new stop condition, since it will never see a CR.  Let's just use:   until 
Token = '.';
**
void main() /* Main Program */
{   char Token[20] = {0};

    Init();
    while(strcmp(Token, ".") != 0)
    {   strcpy(Token, Scan());
        printf("%s\n", Token);
    }
}
/*-------------------------------*/

OK, compile this  program  and  run  it.   Try a couple of lines, terminated by the period.  I used:

     now is the time
     for all good men.

Hey,  what  happened?   When I tried it, I didn't  get  the  last token, the period.  The program didn't halt.  What's 
more, when I pressed the  'enter'  key  a  few  times,  I still didn't get the period.

If you're still stuck in your program, you'll find that  typing a period on a new line will terminate it.

What's going on here?  The answer is  that  we're  hanging  up in SkipWhite.  A quick look at  that  routine will 
show that as long as we're typing null lines, we're going to just continue to loop. After SkipWhite encounters an 
LF,  it tries to execute a GetChar. But since the input buffer is now empty, GetChar's read statement insists  on 
having  another  line.    Procedure  Scan  gets  the terminating period, all right,  but  it  calls SkipWhite to clean 
up, and SkipWhite won't return until it gets a non-null line.

This kind of behavior is not quite as bad as it seems.  In a real compiler,  we'd  be  reading  from  an input file 
instead of  the console, and as long  as  we have some procedure for dealing with end-of-files, everything will 
come out  OK.  But for reading data from the console, the behavior is just too bizarre.  The  fact of the matter is 
that the C/Unix convention is  just  not compatible with the structure of  our  parser,  which  calls for a lookahead 
character.    The  code that the Bell  wizards  have  implemented doesn't use that convention, which is why they 
need 'ungetc'.

OK, let's fix the problem.  To do that, we need to go back to the old definition of IsWhite (delete the  ** \n 
characters) and make  use  of  the procedure Fin that I introduced last time.  If it's not in your current version of 
the cradle, put it there now.**



**Add to Prototypes:
  void Fin(void);

void Fin() /* Skip a CRLF */
{
    if(Look == '\n')
    {   _GetChar();
    }
}
/*-------------------------------*/

Also, modify the main program to read:

void main() /* Main Program */
{   char Token[20] = {0};

    Init();
    while(strcmp(Token, ".") != 0)
    {   strcpy(Token, Scan());
        printf("%s\n", Token);
        if(Token[0] == '\n')
        {   Fin();
        }
    }
}
/*-------------------------------*/

Note the "guard"  test  preceding  the  call to Fin.  That's what makes the whole thing work, and ensures that we 
don't try to read a line ahead.

**Try the code again now. I think you'll like it better.
     now is the time
     for all good men.

If you refer to the code  we  did in the last installment, you'll find that I quietly sprinkled calls to Fin  throughout 
the code, wherever  a line break was appropriate.  This  is  one  of  those areas that really affects the look  & 
feel that I mentioned.  At this  point  I  would  urge  you  to  experiment  with  different arrangements  and  see 
how  you  like  them.    If you want your language  to  be  truly  free-field,  then  newlines   should  be 
transparent.   In  this  case,  the  best  approach is to put the following lines at the BEGINNING of Scan:**

    while(Look == '\n')
    {   Fin();
    }

If, on the other  hand,  you  want  a line-oriented language like Assembler, BASIC, or FORTRAN  (or  even 
Ada...  note that it has comments terminated by newlines),  then  you'll  need for Scan to return  \n's  as 
tokens.  **

For other conventions, you'll  have  to  use  other arrangements. In my example  of  the  last  session, I allowed 
newlines only at specific places, so I was somewhere in the middle ground.  In the rest of these sessions, I'll be 
picking ways  to  handle newlines that I happen to like, but I want you to know how to choose other ways for 
yourselves.

OPERATORS
We  could  stop now and have a  pretty  useful  scanner  for  our purposes.  In the fragments of KISS that we've 



built so  far, the only tokens that have multiple characters are the identifiers and numbers.    All  operators  were 
single  characters.   The  only exception I can think of is the relops <=, >=,  and  <>, but they could be dealt with 
as special cases.

Still, other languages have  multi-character  operators,  such as the ':=' of  Pascal or the '++' and '>>' of C.  So 
while  we may not need multi-character operators, it's  nice to know how to get them if necessary.

Needless to say, we  can  handle operators very much the same way as the other tokens.  Let's start with a 
recognizer:**
                             
**Add to Prototypes:
  int IsOp(char);
  char *GetOp(void);

int IsOp(char ch) /* Recognize Any Operator */
{   int rval = 0;

    if(strchr("*+-/<>=", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

char *GetOp() /* Get an Operator */
{   static char op[3];
    int ndx=0;

    if(IsOp(Look) == 0)
    {   Expected("Operator");
    }
    while((IsOp(Look)) && (ndx < 2))
    {   op[ndx] = Look;
        ndx++;
       _GetChar();
    }
    op[ndx] = '\0';
    SkipWhite();
    return op;
}
/*-------------------------------*/

It's important to  note  that  we  DON'T  have  to  include every possible  operator in this list.   For  example,  the 
paretheses aren't  included, nor is the terminating  period.    The  current version of Scan handles single-
character operators  just  fine as it is.  The list above includes only those  characters  that  can appear in multi-
character operators.  (For specific languages, of course, the list can always be edited.)

Now, let's modify Scan to read:**

char *Scan() /* Lexical Scanner */
{   static char Value[20];

    while(Look == '\n')
    {   Fin();
    }
    if(isalpha(Look))



    {   strcpy(Value, GetName());
    }
    else if(isdigit(Look))
    {   strcpy(Value, GetNum());
    }
    else if(IsOp(Look))
    {   strcpy(Value, GetOp());
    }
    else
    {   Value[0] = Look;
        Value[1] = '\0';
        _GetChar();
    }
    SkipWhite();
    return Value;
}
/*-------------------------------*/

Try the program now.  You  will  find that any code fragments you care  to throw at it will be neatly  broken  up 
into  individual tokens.

LISTS, COMMAS AND COMMAND LINES
Before getting back to the main thrust of our study, I'd  like to get on my soapbox for a moment.
                             
How many times have you worked with a program or operating system that had rigid rules about how you must 
separate items in a list? (Try,  the  last  time  you  used MSDOS!)  Some programs  require spaces as 
delimiters, and  some  require  commas.   Worst of all, some  require  both,  in  different  places.    Most  are 
pretty unforgiving about violations of their rules.

I think this is inexcusable.  It's too  easy  to  write  a parser that will handle  both  spaces  and  commas  in  a 
flexible way. Consider the following procedure:**

**Add to Prototypes:
  void SkipComma(void);

void SkipComma() /* Skip Over a Comma */
{
    SkipWhite();
    if(Look == ',')
    {   _GetChar();
        SkipWhite();
    }
}
/*-------------------------------*/

This eight-line procedure will skip over  a  delimiter consisting of any number (including zero)  of spaces, with 
zero or one comma embedded in the string.

TEMPORARILY, change the call to SkipWhite in Scan to  a  call  to SkipComma.  **Recompile and  try 
inputting some lists.   
**Try:  

now,is,the,time
for,all,good,men.

Works  nicely,  eh? Don't you wish more software authors knew about SkipComma?



For the record, I found that adding the  equivalent  of SkipComma to my Z80 assembler-language programs 
took all of  6  (six) extra bytes of  code.    Even  in a 64K machine, that's not a very high price to pay for user-
friendliness!

I  think  you can see where I'm going here.  Even  if  you  never write a line of a compiler code in your life, there 
are places in every program where  you  can  use  the concepts of parsing.  Any program that processes a 
command line needs them.   In  fact,  if you  think  about  it for a bit, you'll have to conclude that any time  you 
write  a program that processes  user  inputs,  you're defining a  language.  People communicate with 
languages, and the syntax implicit in your program  defines that language.  The real question  is:  are  you  going 
to  define  it  deliberately  and explicitly, or just let it turn out to be  whatever  the  program ends up parsing?

I claim that you'll have  a better, more user-friendly program if you'll take the time to define the syntax explicitly. 
Write down the syntax equations or  draw  the  railroad-track  diagrams, and code the parser using the 
techniques I've shown you here.  You'll end  up with a better program, and it will be easier to write, to boot.

GETTING FANCY
OK, at this point we have a pretty nice lexical scanner that will break  an  input stream up into tokens.  We could 
use  it  as  it stands and have a servicable compiler.  But there are  some other aspects of lexical scanning that 
we need to cover.

The main consideration is <shudder> efficiency.  Remember when we were dealing  with  single-character 
tokens,  every  test  was a comparison of a single character, Look, with a byte constant.  We also used the Case 
statement heavily.

With the multi-character tokens being returned by Scan, all those tests now become string comparisons.  Much 
slower.  And  not only slower, but more awkward, since  there is no string equivalent of the  Case  statement  in 
**C.  It seems especially wasteful to test for what used to be single characters ... the '=',  '+', and other operators 
... using string comparisons.

Using string comparison is not  impossible ... Ron Cain used just that approach in writing Small C.  Since we're 
sticking  to  the KISS principle here, we would  be truly justified in settling for this  approach.    But then I would 
have failed to tell you about one of the key approaches used in "real" compilers.

You have to remember: the lexical scanner is going to be called a _LOT_!   Once for every token in the  whole 
source  program,  in fact.   Experiments  have  indicated  that  the  average compiler spends  anywhere  from 
20% to 40% of  its  time  in  the  scanner routines.  If there were ever a place  where  efficiency deserves real 
consideration, this is it.

For this reason, most compiler writers ask the lexical scanner to do  a  little  more work, by "tokenizing"  the 
input stream.  The idea  is  to  match every token  against  a  list  of  acceptable keywords  and operators, and 
return unique  codes  for  each  one recognized.  In the case of ordinary variable  names  or numbers, we  just 
return a code that says what kind of token they are, and save the actual string somewhere else.

One  of the first things we're going to need is a way to identify keywords.  We can always do  it  with successive 
IF tests, but it surely would be nice  if  we  had  a general-purpose routine that could compare a given string with 
a  table of keywords.  (By the way, we're also going  to  need such a routine later, for dealing with symbol 
tables.)  This  usually presents a problem in **C, because standard **C  doesn't  allow  for  arrays  of variable 
lengths.   It's  a  real  bother  to  have to declare a different search routine for every table. **[snip]

First, modify your global declarations like this:**

/* Define Keywords and Token Types */
  static char *KWlist[] = { "IF","ELSE","ELSEIF","END" };

Next, insert the following new functions:**



**Add to Prototypes:
  int Lookup(char *, int);
  void display(char *);

int Lookup(char *s, int n) /* Table Lookup */
{   int i, found=0;

    i = n;
    while((i >= 0) && (found == 0))
    {   if(strcmp(s, KWlist[i]) == 0)
        {   found = 1;
        }
        else
        {   i--;
        }
    }
    i++;
    return i;  /* If the input string matches a table entry, 

     return the entry index.  If not, return a zero.*/
}
/*-------------------------------*/

void display(char *scan)
{   int i;

    i = Lookup(scan, 4);
    if(i > 0)
    {   i--;
        printf("\tToken:%s\tKeyWord:%s\n",scan,KWlist[i]);
    }
}
/*-------------------------------*/

To test it,  you  can  temporarily  change  the  main  program as follows:**

void main() /* Main Program */
{   char Token[20] = {0};

    Init();
    while(strcmp(Token, ".") != 0)
    {   strcpy(Token, Scan());
        printf("%s\n", Token);
        if(Token[0] == '\n')
        {   Fin();
        }
        display(Token);   /* <---here */
    }
}
/*-------------------------------*/

**Note: the return codes from function Lookup() are their index+1 within the array KWlist[ ]. On exiting function 
Lookup, the index is incremented, so that the keywords are represented by a positive number from 1 to 4 and a 
'not found', or false, is represented by a 0.

**OK, give this  a  try:**



if  else  elseif  end.

now try some others.

Now that we can recognize keywords, the next thing is  to arrange to return codes for them. **[snip]
So what kind of code should we return?  There are really only two reasonable choices.  This seems like an ideal 
application for the  enumerated type.   For  example,  you can define something like**

  enum SymType {IfSym, ElseSym, EndifSym, 
EndSym, xIdent, Number, Operator};

and arrange to return a variable of this type.   Let's  give it a try.  Insert the line above into your type definitions. 
Now, add the two variable declarations:**
                             
  int Token; /* Current Token */
  char Value[20]; /* String Token of Look */

Modify the scanner to read:**

**Change Prototype to:
  void Scan(void);

void Scan() /* Lexical Scanner */
{   int k;

    while(Look == '\n')
    {   Fin();
    }
    if(isalpha(Look))
    {   strcpy(Value, GetName());
        k = Lookup(Value, 4);
        if(k == 0)
        {   Token = xIdent;
        }
        else
        {   Token = (enum SymType)(k-1);
        }
    }
    else if(isdigit(Look))
    {   strcpy(Value, GetNum());
        Token = Number;
    }
    else if(IsOp(Look))
    {   strcpy(Value, GetOp());
        Token = Operator;
    }
    else
    {   Value[0] = Look;
        Value[1] = '\0';
        Token = Operator;
        _GetChar();
    }
    SkipWhite();
}
/*-------------------------------*/



Finally, modify the main program to read:**

void main() /* Main Program */
{
    Init();
    while(Token != EndSym)
    {   Scan();
        switch(Token)
        {   case xIdent:
                printf("\tIdent\t");
                break;
            case Number:
                printf("\tNumber\t");
                break;
            case Operator:
                printf("\tOperator");
                break;
            case IfSym:
            case ElseSym:
            case EndifSym:
            case EndSym:
                printf("\tKeyword\t");
                break;
            default:
                break;
        }
        printf("\t%s\n", Value);
    }
}
/*-------------------------------*/

What we've done here is to replace the string Token  used earlier with an enumerated type. Scan returns the 
type in variable Token, and returns the string itself in the new variable Value.

OK, compile this and give it a whirl.  If everything  goes right, you should see that we are now recognizing 
keywords.

**Try: if  elseif  else  end
if  abc=1  then  else  end

What  we  have  now is working right, and it was easy to generate from what  we  had  earlier.    However,  it still 
seems a little "busy" to me.  We can  simplify  things a bit by letting GetName, GetNum, GetOp, and Scan be 
procedures  working  with  the global variables Token and Value, thereby eliminating the  local copies. It  also 
seems a little cleaner to move  the  table  lookup  into GetName.  The new form for the four procedures is, 
then:**

**Change Prototypes to:
  void GetName(void);
  void GetNum(void);
  void GetOp(void);

void GetName() /* Get an Identifier */
{   int k, ndx=0;

    Value[0] = '\0';
    if(! isalpha(Look))
    {   Expected("Name");



    }
    while((isalnum(Look)) && (ndx < 8))
    {   Value[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Value[ndx] = '\0';
    k = Lookup(Value, 4);
    if(k == 0)
    {   Token = xIdent;
    }
    else
    {   Token = (enum SymType)(k-1);
    }
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{   int ndx=0;

    Value[0] = '\0';
    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while((isdigit(Look)) && (ndx < 16))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    Token = Number;
}
/*-------------------------------*/

void GetOp() /* Get an Operator */
{   int ndx=0;

    Value[0] = '\0';
    if(! IsOp(Look))
    {   Expected("Operator");
    }
    while((IsOp(Look)) && (ndx < 10))
    {   Value[ndx] = Look;
        ndx++;
       _GetChar();
    }
    Value[ndx] = '\0';
    Token = Operator;
}
/*-------------------------------*/

void Scan() /* Lexical Scanner */
{
    while(Look == '\n')
    {   Fin();
    }



    if(isalpha(Look))
    {   GetName();
    }
    else if(isdigit(Look))
    {   GetNum();
    }
    else if(IsOp(Look))
    {   GetOp();
    }
    else
    {   Value[0] = Look;
        Value[1] = '\0';
        Token = Operator;
        _GetChar();
    }
    SkipWhite();
}
/*-------------------------------*/

                             
**Recompile and try it again, make sure it's still working.

RETURNING A CHARACTER
Essentially  every scanner I've ever seen  that  was  written** used  the  mechanism of an enumerated type that 
I've just described.  It is certainly  a workable mechanism, but it doesn't seem the simplest approach to me.

For one thing, the  list  of possible symbol types can get pretty long. Here, I've used just one symbol, "Operator,"  
to  stand for all of the operators, but I've seen other  designs  that actually return different codes for each one.

There is, of course, another simple type that can be  returned as a  code: the character.  Instead  of  returning 
the  enumeration value 'Operator' for a '+' sign, what's wrong with just returning the character itself?  A character 
is just as good a variable for encoding the different  token  types,  it  can  be  used  in case statements  easily, 
and it's sure a lot easier  to  type.    What could be simpler?

Besides, we've already  had  experience with the idea of encoding keywords as single characters.  Our previous 
programs are already written  that  way,  so  using  this approach will  minimize  the changes to what we've 
already done.

Some of you may feel that this idea of returning  character codes is too mickey-mouse.  I must  admit  it gets a 
little awkward for multi-character operators like '<='.   If you choose to stay with the  enumerated  type,  fine. 
For the rest, I'd like to show you how to change what we've done above to support that approach.

First, you can delete the SymType declaration now ... we won't be needing that.  And you can change the type 
of Token to char.

  char Token; /* Current Token */

Next, to replace SymType, add the following :**

  static char KWcode[6] = { 'x','i','l','e','e' };

(I'll be encoding all idents with the single character 'x'.)

Lastly, modify Scan and its relatives as follows:**

void GetName() /* Get an Identifier */
{   int k, ndx=0;



    Value[0] = '\0';
    if(! isalpha(Look))
    {   Expected("Name");
    }
    while((isalnum(Look)) && (ndx < 18))
    {   Value[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Value[ndx] = '\0';
    k = Lookup(Value, 4);
    Token = KWcode[k];
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{   int ndx=0;

    Value[0] = '\0';
    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while((isdigit(Look)) && (ndx < 10))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    Token = '#';
}
/*-------------------------------*/

void GetOp() /* Get an Operator */
{   int ndx=0;

    Value[0] = '\0';
    if(! IsOp(Look))
    {   Expected("Operator");
    }
    while((IsOp(Look)) && (ndx < 10))
    {   Value[ndx] = Look;
        ndx++;
       _GetChar();
    }
    Value[ndx] = '\0';
    if(strlen(Value) == 1)
    {   Token = Value[0];
    }
    else
    {   Token = '?';
    }
}
/*-------------------------------*/

void Scan() /* Lexical Scanner */
{



    while(Look == '\n')
    {   Fin();
    }
    if(isalpha(Look))
    {   GetName();
    }
    else if(isdigit(Look))
    {   GetNum();
    }
    else if(IsOp(Look))
    {   GetOp();
    }
    else
    {   Value[0] = Look;
        Value[1] = '\0';
        Token = '?';
        _GetChar();
    }
    SkipWhite();
}
/*-------------------------------*/

void main() /* Main Program */
{
    Init();
    while(strcmp(Value, "END") != 0)
    {    Scan();
        switch(Token)
        {   case 'x':
                printf("\tIdent\t");
                break;
            case '#':
                printf("\tNumber\t");
                break;
            case 'i':
            case 'l':
            case 'e':
                printf("\tKeyword\t");
                break;
            default:
                printf("\tOperator");
                break;
        }
        printf("\t%s\n", Value);
    }
}
/*-------------------------------*/

This program should  work  the  same  as the previous version.  A minor  difference  in  structure,  maybe,  but 
it   seems  more straightforward to me.
**Recompile and test as before.

DISTRIBUTED vs CENTRALIZED SCANNERS
The structure for the lexical scanner that I've just shown you is very conventional, and  about  99% of all 
compilers use something very  close  to it.  This is  not,  however,  the  only  possible structure, or even always 
the best one.



                             
The problem with the  conventional  approach  is that the scanner has no knowledge of context.  For example,  it 
can't distinguish between the assignment operator '=' and  the  relational operator '=' (perhaps that's why both C 
and Pascal  use  different strings for the  two).    All  the scanner can do is to pass the operator along  to  the 
parser, which can hopefully tell from the context which operator is meant.    Similarly, a keyword like 'IF' has no 
place in the middle of a  math  expression, but if one happens to appear there, the scanner  will  see no problem 
with it, and will return it to the parser, properly encoded as an 'IF'.

With this  kind  of  approach,  we  are  not really using all the information at our disposal.  In the middle of an 
expression, for example, the parser  "knows"  that  there  is no need to look for keywords,  but it has no way of 
telling the scanner that.  So the scanner  continues to do so.  This, of  course,  slows  down  the compilation.

In real-world compilers, the  designers  often  arrange  for more information  to be passed between parser  and 
scanner,  just  to avoid  this  kind of problem.  But  that  can  get  awkward,  and certainly destroys a lot of the 
modularity of the structure.

The  alternative  is  to seek some  way  to  use  the  contextual information that comes from knowing where we 
are  in  the parser. This leads us  back  to  the  notion of a distributed scanner, in which various portions  of  the 
scanner are called depending upon the context.

In KISS, as  in  most  languages,  keywords  ONLY  appear  at the beginning of a statement.  In places like 
expressions,  they are not allowed.  Also, with one minor exception (the multi-character relops)  that  is  easily 
handled,  all  operators   are  single characters, which means that we don't need GetOp at all.

So it turns out  that  even  with  multi-character tokens, we can still always tell from the  current  lookahead 
character exactly what kind of token is coming,  except  at the very beginning of a statement.

Even at that point, the ONLY  kind  of  token we can accept is an identifier.  We need only to determine if that 
identifier  is  a keyword or the target of an assignment statement.

We end up, then, still needing only GetName and GetNum, which are used very much as we've used them in 
earlier installments.

It may seem  at first to you that this is a step backwards, and a rather  primitive  approach.   In fact, it is an 
improvement over the classical scanner, since we're  using  the  scanning routines only where they're really 
needed.  In places  where  keywords are not allowed, we don't slow things down by looking for them.

MERGING SCANNER AND PARSER
Now that we've covered  all  of the theory and general aspects of lexical scanning that we'll be needing, I'm 
FINALLY ready to back up my claim that  we  can  accomodate multi-character tokens with minimal change to 
our previous work.  To keep  things  short  and simple I will restrict myself here to a subset of what we've done 
before; I'm allowing only one control construct (the  IF)  and no Boolean expressions.  That's enough to 
demonstrate the parsing of both keywords and expressions.  The extension to the full  set of constructs should 
be  pretty  apparent  from  what  we've already done.

All  the  elements  of  the  program to parse this subset,  using single-character tokens, exist  already in our 
previous programs. I built it by judicious copying of these files,  but  I  wouldn't dare try to lead you through that 
process.  Instead, to avoid any confusion, the whole program is shown below:**

**Begin with file: Cradle7B.c

**Add to Prototypes:
  char GetName(void); char GetNum(void);
  char *NewLabel(void); void PostLabel(char *);
  void Ident(void); void Factor(void);
  void SignedFactor(void); void Term1(void);
  void Term(void); void FirstTerm(void);
  void Expression(void); void Condition(void);



  void DoIf(void); void Assignment(void);
  void Block(void); void DoProgram(void);

char GetName() /* Get an Identifier */
{   char Name;

    while(Look == '\n')
    {   Fin();
    }
    if(! isalpha(Look))
    {    Expected("Name");
    }
    Name = toupper(Look);
    _GetChar();
    SkipWhite();
    return Name;
}
/*-------------------------------*/

char GetNum() /* Get a Number */
{   char Value;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    Value = Look;
    _GetChar();
    SkipWhite();
    return Value;
}
/*-------------------------------*/

char *NewLabel() /* Generate a Unique Label */
{   char S[6];
    static char Label[7];

    strcpy(Label, "L");
    sprintf(S, "%d", LCount);
    strcat(Label, S);
    LCount++;
    return Label;
}
/*-------------------------------*/

void PostLabel(char *string) /* Post a Label To Output */
{
    printf("%s:", string);
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{   char a_string[20];
    char Name[2] = {0,0};



    Name[0] = GetName();
    if(Look == '(')
    {    Match('(');
         Match(')');
         strcpy(a_string, "call  ");
         strcat(a_string, Name);
         EmitLn(a_string);
    }
    else
    {    strcpy(a_string, "mov  ax, ");
         strcat(a_string, Name);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];
    char Value[2] = {0,0};

    if(Look == '(')
    {    Match('(');
         Expression();
         Match(')');
    }
    else if(isalpha(Look))
    {    Ident();
    }
    else
    {    Value[0] = GetNum();
         strcpy(a_string, "mov  ax, ");
         strcat(a_string, Value);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

void SignedFactor() /* Parse and Translate the First Math Factor */
{
    if(IsAddop(Look))
    {   _GetChar();
        SkipWhite();
    }
    Factor();
    if(Look == '-')
    {   EmitLn("neg  ax");
    }
}
/*-------------------------------*/

void Term1()  /* Completion of Term Processing  (called by Term and FirstTerm) */
{
    while(IsMulop(Look))
    {    EmitLn("push  ax");
         switch(Look)
         {    case '*':



                  Multiply();
                  break;
              case '/':
                  Divide();
                  break;
              default:
                  break;
         }
    }
}
/*-------------------------------*/

                             
void Term() /* Parse and Translate a Math Term */
{
    Factor();
    Term1();
}
/*-------------------------------*/

void FirstTerm() /* Parse and Translate a Math Term */
{
    SignedFactor();
    Term1();
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
    FirstTerm();
    while(IsAddop(Look))
    {   EmitLn("push  ax");
        switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/

void Condition()
{
    EmitLn("Condition");
}
/*-------------------------------*/

void DoIf() /* Recognize and Translate an IF Construct */
{   char a_string[20];
    char L1[7], L2[7];



    Match('i');
    Condition();
    strcpy(L1, NewLabel());
    strcpy(L2, L1);
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    Block();
    if(Look == 'l')
    {   Match('l');
        strcpy(L2, NewLabel());
        strcpy(a_string, "jmp  ");
        strcat(a_string, L2);
        EmitLn(a_string);
        PostLabel(L1);
        Block();
    }
    PostLabel(L2);
    Match('e');
}
/*-------------------------------*/

void Assignment()
{   char a_string[20];
    char Name[2] = {0,0};

    Name[0] = GetName();
    Match('=');
    Expression();
    strcpy(a_string, "lea  di, ");
    strcat(a_string, Name);
    EmitLn(a_string);
    EmitLn("mov  [di], ax");
}
/*-------------------------------*/

                             
void Block() /* Recognize and Translate a Statement Block */
{
    while(strchr("el", Look) == 0)
    {   switch(Look)
        {   case 'i':
                DoIf();
                break;
            case '\n':
                while(Look == '\n')
                {   Fin();
                }
                break;
            default:
                Assignment();
                break;
        }
    }
}
/*-------------------------------*/



void DoProgram() /* Parse and Translate a Program */
{
    Block();
    if(Look != 'e')
    {   Expected("end");
    }
    EmitLn("END");
}
/*-------------------------------*/

A couple of comments:

 (1) The form for the expression parser,  using  FirstTerm, etc., is  a  little  different from what you've 
      seen before.  It's yet another variation on the same theme.  Don't let it throw you ... the change 
      is not required for  what follows.

 (2) Note that, as usual, I had to add calls to Fin  at strategic spots to allow for multiple lines.

Before we proceed to adding the scanner, first copy this file and verify that it does indeed  parse things correctly.  
Don't forget the "codes": 'i' for IF, 'l' for ELSE, and 'e' for END or ENDIF.
**Compile and try:

ia=bla=cee
ia=blia=cla=dea=fee

If the program works, then let's press on.  In adding the scanner modules to the program, it helps  to  have a 
systematic plan.  In all  the  parsers  we've  written  to  date,  we've  stuck  to  a convention that the current 
lookahead character should  always be a non-blank character.  We  preload  the  lookahead  character in Init, 
and keep the "pump primed"  after  that.  To keep the thing working right at newlines, we had to modify this a bit 
and treat the newline as a legal token.

In the  multi-character version, the rule is similar: The current lookahead character should always be left at the 
BEGINNING of the next token, or at a newline.

The multi-character version is shown next.  To get it,  I've made the following changes:

 o Added the variables Token  and Value, and the type definitions needed by Lookup.

 o Added the definitions of KWList and KWcode.

 o Added Lookup.

 o Replaced GetName and GetNum by their multi-character versions.  (Note that the call  to Lookup 
    has been moved out of GetName,  so  that  it  will  not   be  executed  for  calls  within  an 
    expression.)

 o Created a new,  vestigial  Scan that calls GetName, then scans for keywords.

 o Created  a  new  procedure,  MatchString,  that  looks  for  a specific keyword.  Note that, unlike  
    Match,  MatchString does NOT read the next keyword.

 o Modified Block to call Scan.

 o Changed the calls  to  Fin  a  bit.   Fin is now called within GetName.

**Here are the program changes:**



**Add to Global Variables:
  char Token; /* Current Token */
  char Value[20]; /* String Token of Look */

/* Define Keywords and Token Types */
  static char *KWlist[] = { "IF","ELSE","ENDIF","END" };
  static char KWcode[6] = { 'x','i','l','e','e' };

**Changes to Prototypes:
  void GetName(void);   void GetNum(void);
   int Lookup(char *,int);   void Scan(void);
  void MatchString(char *);

void Fin() /* Skip a CRLF */
{
    if(Look == '\n')
    {   _GetChar();
    }
    SkipWhite();
}
/*-------------------------------*/

int Lookup(char *s, int n) /* Table Lookup */
{   int i, found=0;

    i = n;
    while((i >= 0) && (found == 0))
    {   if(strcmp(s, KWlist[i]) == 0)
        {   found = 1;
        }
        else
        {   i--;
        }
    }
    i++;
    return i;  /* If the input string matches a table entry, 

     return the entry index.  If not, return a zero.*/
}
/*-------------------------------*/

void GetName() /* Get an Identifier */
{   int ndx=0;

    while(Look == '\n')
    {   Fin();
    }
    if(! isalpha(Look))
    {   Expected("Name");
    }
    Value[0] = '\0';
    while((isalnum(Look)) && (ndx < 18))
    {   Value[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }



    Value[ndx] = '\0';
    SkipWhite();
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{   int ndx=0;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    Value[0] = '\0';
    while((isdigit(Look)) && (ndx < 10))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    Token = '#';
    SkipWhite();
}
/*-------------------------------*/

void Scan() /* Lexical Scanner */
{   int k;

    GetName();
    k = Lookup(Value, 4);
    Token = KWcode[k];
}
/*-------------------------------*/
                             

void MatchString(char *string) /* Match a Specific Input String */
{   char a_string[20];

    if(strcmp(Value, string) != 0)
    {    strcpy(a_string, "\"");
         strcat(a_string, string);
         strcat(a_string, "\"");
         Expected(a_string);
    }
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{   char a_string[20];

    GetName();
    if(Look == '(')
    {    Match('(');
         Match(')');
         strcpy(a_string, "call  ");
         strcat(a_string, Value);
         EmitLn(a_string);
    }



    else
    {    strcpy(a_string, "mov  ax, ");
         strcat(a_string, Value);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{   char a_string[20];

    if(Look == '(')
    {    Match('(');
         Expression();
         Match(')');
    }
    else if(isalpha(Look))
    {    Ident();
    }
    else
    {    GetNum();
         strcpy(a_string, "mov  ax, ");
         strcat(a_string, Value);
         EmitLn(a_string);
    }
}
/*-------------------------------*/

void DoIf() /* Recognize and Translate an IF Construct */
{   char a_string[20];
    char L1[7], L2[7];

    Condition();
    strcpy(L1, NewLabel());
    strcpy(L2, L1);
    strcpy(a_string, "jnz  ");
    strcat(a_string, L1);
    EmitLn(a_string);
    Block();
    if(Token == 'l')
    {   strcpy(L2, NewLabel());
        strcpy(a_string, "jmp  ");
        strcat(a_string, L2);
        EmitLn(a_string);
        PostLabel(L1);
        Block();
    }
    PostLabel(L2);
    MatchString("ENDIF");
}
/*-------------------------------*/

void Assignment()
{   char a_string[20];
    char Name[10];



    strcpy(Name, Value);
    Match('=');
    Expression();
    strcpy(a_string, "lea  di, ");
    strcat(a_string, Name);
    EmitLn(a_string);
    EmitLn("mov  [di], ax");
}
/*-------------------------------*/

void Block() /* Recognize and Translate a Statement Block */
{
    Scan();
    while(strchr("el", Token) == 0)
    {   switch(Token)
        {   case 'i':
                DoIf();
                break;
            default:
                Assignment();
                break;
        }
        Scan();
    }
}
/*-------------------------------*/

void DoProgram() /* Parse and Translate a Program */
{
    Block();
    MatchString("END");
    EmitLn("END");
}
/*-------------------------------*/

Compare this program with its  single-character  counterpart.   I think you will agree that the differences are 
minor.  **Compile and try:**

if abc=def else abc=efg endif end
if a=b else if a=c else a=d endif a=e endif end

CONCLUSION
At this point, you have learned how to parse  and  generate  code for expressions,  Boolean  expressions,  and 
control structures. You have now learned how to develop lexical scanners, and  how to incorporate their 
elements into a translator.  You have still not seen ALL the elements combined into one program, but on the 
basis of  what  we've  done before you should find it a straightforward matter to extend our earlier programs to 
include scanners.

We are very  close  to  having  all  the elements that we need to build a real, functional compiler.  There are still 
a  few things missing, notably procedure  calls  and type definitions.  We will deal with  those  in  the  next  few 
sessions.  Before doing so, however, I thought it  would  be fun to turn the translator above into a true compiler.  
That's what we'll  be  doing  in  the next installment.

Up till now, we've taken  a rather bottom-up approach to parsing, beginning with low-level constructs and 
working our way  up.   In the next installment,  I'll  also  be  taking a look from the top down,  and  we'll  discuss 



how the structure of the translator is altered by changes in the language definition.

See you then.

INTRODUCTION
This is going to be a  different  kind of session than the others in our series on  parsing  and  compiler 
construction.  For this session, there won't be  any  experiments to do or code to write. This  once,  I'd  like  to 
just  talk  with  you  for  a  while. Mercifully, it will be a short  session,  and then we can take up where we left 
off, hopefully with renewed vigor.

When  I  was  in college, I found that I could  always  follow  a prof's lecture a lot better if I knew where he was 
going with it. I'll bet you were the same.

So I thought maybe it's about  time  I told you where we're going with this series: what's coming up in future 
installments, and in general what all  this  is  about.   I'll also share some general thoughts concerning the 
usefulness of what we've been doing.

THE ROAD HOME
So far, we've  covered  the parsing and translation of arithmetic expressions,  Boolean expressions, and 
combinations connected  by relational  operators.    We've also done the  same  for  control constructs.    In  all 
of this we've leaned heavily on the use of top-down, recursive  descent  parsing,  BNF  definitions  of  the 
syntax, and direct generation of assembly-language code.  We also learned the value of  such  tricks  as single-
character tokens to help  us  see  the  forest  through  the  trees.    In  the  last installment  we dealt with lexical 
scanning,  and  I  showed  you simple but powerful ways to remove the single-character barriers.

Throughout the whole study, I've emphasized  the  KISS philosophy ... Keep It Simple, Sidney ... and I hope by 
now  you've realized just  how  simple  this stuff can really be.  While there are for sure areas of compiler  theory 
that  are truly intimidating, the ultimate message of this series is that in practice you  can just politely  sidestep 
many  of  these  areas.    If  the  language definition  cooperates  or,  as in this series, if you can define the 
language as you go, it's possible to write down  the language definition in BNF with reasonable ease.  And, as 
we've  seen, you can crank out parse procedures from the BNF just about as fast as you can type.

As our compiler has taken form, it's gotten more parts,  but each part  is  quite small and simple, and  very 
much  like  all  the others.

At this point, we have many  of  the makings of a real, practical compiler.  As a matter of  fact,  we  already have 
all we need to build a toy  compiler  for  a  language as powerful as, say, Tiny BASIC.  In the next couple of 
installments, we'll  go  ahead  and define that language.

To round out  the  series,  we  still  have a few items to cover.
These include:

   o Procedure calls, with and without parameters

   o Local and global variables

   o Basic types, such as character and integer types

   o Arrays

   o Strings

   o User-defined types and structures

   o Tree-structured parsers and intermediate languages

   o Optimization



These will all be  covered  in  future  installments.  When we're finished, you'll have all the tools you need to 
design  and build your own languages, and the compilers to translate them.

I can't  design  those  languages  for  you,  but I can make some comments  and  recommendations.    I've 
already  sprinkled  some throughout past installments.    You've  seen,  for  example, the control constructs I 
prefer.

These constructs are going  to  be part of the languages I build. I  have  three  languages in mind at this point, 
two of which you will see in installments to come:

TINY - A  minimal,  but  usable  language  on the order  of  Tiny BASIC or Tiny C.  It won't be very 
       practical, but  it will have enough power to let you write and  run  real programs that do 
       something worthwhile.

KISS - The  language  I'm  building for my  own  use.    KISS  is intended to be  a  systems 
       programming language.  It won't have strong typing  or  fancy data structures, but it will support 
       most of  the  things  I  want to do with a higher-order language (HOL), except perhaps writing 
       compilers.
                              
I've also  been  toying  for  years  with  the idea of a HOL-like assembler,  with  structured  control  constructs 
and  HOL-like assignment statements.  That, in  fact, was the impetus behind my original foray into the jungles 
of compiler theory.  This one may never be built, simply  because  I've  learned that it's actually easier to 
implement a language like KISS, that only uses a subset of the CPU instructions.    As you know, assembly 
language can be bizarre  and  irregular  in the extreme, and a language that maps one-for-one onto it can be a 
real challenge.  Still,  I've always felt that the syntax used  in conventional assemblers is dumb ... why is

     MOVE.L A,B

better, or easier to translate, than

     B=A ?

I  think  it  would  be  an  interesting  exercise to  develop  a "compiler" that  would give the programmer 
complete access to and control over the full complement  of the CPU instruction set, and would allow you to 
generate  programs  as  efficient  as assembly language, without the pain  of  learning a set of mnemonics.  Can 
it be done?  I don't  know.  The  real question may be, "Will the resulting language be any  easier  to  write  than 
assembly"?  If not, there's no point in it.  I think that it  can  be  done, but I'm not completely sure yet how the 
syntax should look.

Perhaps you have some  comments  or suggestions on this one.  I'd love to hear them.

You probably won't be surprised to learn that I've already worked ahead in most  of the areas that we will cover. 
I have some good news:  Things  never  get  much  harder than they've been so far. It's  possible  to  build a 
complete, working compiler for a real language, using nothing  but  the same kinds of techniques you've learned 
so far.  And THAT brings up some interesting questions.

WHY IS IT SO SIMPLE?
Before embarking  on this series, I always thought that compilers were just naturally complex computer 
programs  ...  the ultimate challenge.  Yet the things we have done here have  usually turned out to be quite 
simple, sometimes even trivial.

For awhile, I thought  is  was simply because I hadn't yet gotten into the meat  of  the  subject.    I had only 
covered the simple parts.  I will freely admit  to  you  that, even when I began the series,  I  wasn't  sure how far 
we would be able  to  go  before things got too complex to deal with in the ways  we  have so far. But at this 
point I've already  been  down the road far enough to see the end of it.  Guess what?
                              



                     THERE ARE NO HARD PARTS!

Then, I thought maybe it was because we were not  generating very good object  code.    Those  of  you  who 
have been following the series and trying sample compiles know that, while the code works and  is  rather 
foolproof,  its  efficiency is pretty awful.   I figured that if we were  concentrating on turning out tight code, we 
would soon find all that missing complexity.

To  some  extent,  that one is true.  In particular, my first few efforts at trying to improve efficiency introduced 
complexity at an alarming rate.  But since then I've been tinkering around with some simple optimizations and 
I've found some that result in very respectable code quality, WITHOUT adding a lot of complexity.

Finally, I thought that  perhaps  the  saving  grace was the "toy compiler" nature of the study.   I  have made no 
pretense that we were  ever  going  to be able to build a compiler to compete with Borland and Microsoft.  And 
yet, again, as I get deeper into this thing the differences are starting to fade away.

Just  to make sure you get the message here, let me state it flat out:

   USING THE TECHNIQUES WE'VE USED  HERE,  IT  IS  POSSIBLE TO  BUILD A 
   PRODUCTION-QUALITY, WORKING COMPILER WITHOUT ADDING  A LOT OF COMPLEXITY 
   TO WHAT WE'VE ALREADY DONE.

Since  the series began I've received  some  comments  from  you. Most of them echo my own thoughts:  "This 
is easy!    Why  do the textbooks make it seem so hard?"  Good question.

Recently, I've gone back and looked at some of those texts again, and even bought and read some new ones. 
Each  time,  I come away with the same feeling: These guys have made it seem too hard.

What's going on here?  Why does the whole thing seem difficult in the texts, but easy to us?    Are  we that 
much smarter than Aho, Ullman, Brinch Hansen, and all the rest?

Hardly.  But we  are  doing some things differently, and more and more  I'm  starting  to appreciate the value of 
our approach, and the way that  it  simplifies  things.    Aside  from  the obvious shortcuts that I outlined in Part I,  
like single-character tokens and console I/O, we have  made some implicit assumptions and done some things 
differently from those who have designed compilers in the past. As it turns out, our approach makes life a lot 
easier.

So why didn't all those other guys use it?

You have to remember the context of some of the  earlier compiler development.  These people were working 
with very small computers of  limited  capacity.      Memory  was  very  limited,  the  CPU instruction  set  was 
minimal, and programs ran  in  batch  mode rather  than  interactively.   As it turns out, these caused some key 
design decisions that have  really  complicated  the designs. Until recently,  I hadn't realized how much of 
classical compiler design was driven by the available hardware.

Even in cases where these  limitations  no  longer  apply, people have  tended  to  structure their programs in 
the same way, since that is the way they were taught to do it.

In  our case, we have started with a blank sheet of paper.  There is a danger there, of course,  that  you will end 
up falling into traps that other people have long since learned to avoid.  But it also has allowed us to  take 
different approaches that, partly by design  and partly by pure dumb luck, have  allowed  us  to  gain simplicity.

Here are the areas that I think have  led  to  complexity  in the past:

  o  Limited RAM Forcing Multiple Passes

     I  just  read  "Brinch  Hansen  on  Pascal   Compilers"  (an  excellent book, BTW).  He  
     developed a Pascal compiler for a  PC, but he started the effort in 1981 with a 64K system, and  
     so almost every design decision  he made was aimed at making  the compiler fit  into  RAM.    



     To do this, his compiler has  three passes, one of which is the lexical scanner.  There is  no 
     way he could, for  example, use the distributed scanner I  introduced  in  the last installment,  
     because  the  program  structure wouldn't allow it.  He also required  not  one but  two 
     intermediate  languages,  to  provide  the communication  between phases.

     All the early compiler writers  had to deal with this issue:  Break the compiler up into enough 
     parts so that it  will fit  in memory.  When  you  have multiple passes, you need to add  data 
     structures to support the  information  that  each pass  leaves behind for the next.   That adds 
     complexity, and ends  up driving the  design.    Lee's  book,  "The  Anatomy  of a  Compiler,"  
     mentions a FORTRAN compiler developed for an IBM  1401.  It had no fewer than 63 separate 
     passes!  Needless to  say,  in a compiler like this  the  separation  into  phases  would 
     dominate the design.

     Even in  situations  where  RAM  is  plentiful,  people have  tended  to  use  the same 
     techniques because  that  is  what  they're familiar with.   It  wasn't  until Turbo Pascal came  
     along that we found how simple a compiler could  be  if  you  started with different assumptions.

  o  Batch Processing
                              
     In the early days, batch  processing was the only choice ... there was no interactive computing.   
     Even  today, compilers  run in essentially batch mode.

     In a mainframe compiler as  well  as  many  micro compilers,  considerable effort is expended 
     on error recovery ... it can  consume as much as 30-40%  of  the  compiler  and completely  
     drive the design.  The idea is to avoid halting on the first  error, but rather to keep going at all 
     costs,  so  that  you  can  tell  the  programmer about as many errors in the whole  program as 
     possible.

     All of that harks back to the days of the  early mainframes,  where turnaround time was 
     measured  in hours or days, and it  was important to squeeze every last ounce of information 
     out  of each run.

     In this series, I've been very careful to avoid the issue of  error recovery, and instead our compiler  
     simply  halts with  an error message on  the  first error.  I will frankly admit  that it was mostly 
     because I wanted to take the easy way out  and keep things simple.   But  this  approach,  
     pioneered by  Borland in Turbo Pascal, also has a lot going for it anyway.  Aside from keeping 
     the  compiler  simple,  it also fits very  well  with   the  idea  of  an  interactive  system.    When  
     compilation is  fast, and especially when you have an editor  such as Borland's that  will  take 
     you right to the point of  the error, then it makes a  lot  of sense to stop there, and  just restart 
     the compilation after the error is fixed.

  o  Large Programs

     Early compilers were designed to handle  large  programs ... essentially infinite ones.    In those 
     days there was little  choice;  the  idea  of  subroutine  libraries  and  separate  compilation  
     were  still  in  the  future.      Again,  this  assumption led to  multi-pass designs and 
     intermediate files  to hold the results of partial processing.

     Brinch Hansen's  stated goal was that the compiler should be  able to compile itself.   Again, 
     because of his limited RAM,  this drove him to a multi-pass design.  He needed  as little  
     resident compiler code as possible,  so  that  the necessary  tables and other data structures 
     would fit into RAM.

     I haven't stated this one yet, because there  hasn't  been a  need  ... we've always just read and  
     written  the  data  as  streams, anyway.  But  for  the  record,  my plan has always  been that, 
     in  a  production compiler, the source and object  data should all coexist  in  RAM with the 
     compiler, a la the  early Turbo Pascals.  That's why I've been  careful  to keep  routines like 
     GetChar  and  Emit  as  separate  routines, in  spite of their small size.   It  will be easy to 



     change them  to read to and write from memory.

  o  Emphasis on Efficiency

     John  Backus has stated that, when  he  and  his  colleagues  developed the original FORTRAN 
     compiler, they KNEW that they  had to make it produce tight code.  In those days, there was  a 
     strong sentiment against HOLs  and  in  favor  of assembly  language, and  efficiency was the 
     reason.  If FORTRAN didn't  produce very good  code  by  assembly  standards,  the users  
     would simply refuse to use it.  For the record, that FORTRAN  compiler turned out to  be  one  
     of  the most efficient ever  built, in terms of code quality.  But it WAS complex!

     Today,  we have CPU power and RAM size  to  spare,  so  code  efficiency is not  so  much  of  
     an  issue.    By studiously  ignoring this issue, we  have  indeed  been  able to Keep It  Simple.    
     Ironically,  though, as I have said, I have found  some optimizations that we can  add  to  the  
     basic compiler  structure, without having to add a lot of complexity.  So in  this  case we get to 
     have our cake and eat it too:  we  will  end up with reasonable code quality, anyway.

  o  Limited Instruction Sets

     The early computers had primitive instruction sets.   Things  that  we  take  for granted, such as  
     stack  operations  and  indirect addressing, came only with great difficulty.

     Example: In most compiler designs, there is a data structure  called the literal pool.  The 
     compiler  typically identifies  all literals used in the program, and collects  them  into a  single 
     data structure.    All references to the literals are  done  indirectly  to  this  pool.    At  the   end   
     of  the  compilation, the  compiler  issues  commands  to  set  aside  storage and initialize the 
     literal pool.

     We haven't had to address that  issue  at all.  When we want  to load a literal, we just do it, in 
     line, as in

          MOV  AX,  3

     There is something to be said for the use of a literal pool,  particularly on a machine like  the 
     8086 where data and code  can  be separated.  Still, the whole  thing  adds  a  fairly  large 
     amount of complexity with little in return.

     Of course, without the stack we would be lost.  In  a micro,  both  subroutine calls and 
     temporary storage depend  heavily on the stack, and  we  have used it even more than 
     necessary  to ease expression parsing.

  o  Desire for Generality

     Much of the content of the typical compiler text is taken up  with issues we haven't addressed 
     here at all ... things like  automated  translation  of  grammars,  or generation of LALR  parse 
     tables.  This is not simply because  the  authors want  to impress you.  There are good, 
     practical  reasons  why the  subjects are there.

     We have been concentrating on the use of a recursive-descent  parser to parse a  deterministic  
     grammar,  i.e.,  a grammar  that is not ambiguous and, therefore, can be parsed with one  level 
     of lookahead.  I haven't made much of this limitation,  but  the  fact  is  that  this represents a 
     small subset  of  possible grammars.  In fact,  there is an infinite number of  grammars that we 
     can't parse using our techniques.    The LR  technique is a more powerful one, and can deal with 
     grammars  that we can't.

     In compiler theory, it's important  to know how to deal with  these  other  grammars,  and  how  
     to  transform  them  into  grammars  that  are  easier to deal with.  For example, many  (but not 



     all) ambiguous  grammars  can  be  transformed into  unambiguous ones.  The way to do this is 
     not always obvious,  though, and so many people  have  devoted  years  to develop  ways to 
     transform them automatically.

     In practice, these  issues  turn out to be considerably less  important.  Modern languages tend  
     to be designed to be easy  to parse, anyway.   That  was a key motivation in the design  of 
     Pascal.   Sure,  there are pathological grammars that you  would be hard pressed to write 
     unambiguous BNF  for,  but in  the  real  world  the best answer is probably to avoid those  
     grammars!

     In  our  case,  of course, we have sneakily let the language evolve  as  we  go, so we haven't 
     painted ourselves into any corners here.  You may not always have that luxury.   Still,  with a 
     little  care  you  should  be able to keep the parser simple without having to resort to automatic  
     translation of the grammar.

We have taken  a  vastly  different  approach in this series.  We started with a clean sheet  of  paper,  and 
developed techniques that work in the context that  we  are in; that is, a single-user PC  with  rather  ample CPU 
power and RAM space.  We have limited ourselves to reasonable grammars that  are easy to parse, we have 
used the instruction set of the CPU to advantage, and we have not concerned ourselves with efficiency.  THAT's 
why it's been easy.

Does this mean that we are forever doomed  to  be  able  to build only toy compilers?   No, I don't think so.  As 
I've said, we can add  certain   optimizations   without   changing   the  compiler structure.  If we want to process 
large files, we can  always add file  buffering  to do that.  These  things  do  not  affect  the overall program 
design.

And I think  that's  a  key  factor.   By starting with small and limited  cases,  we  have been able to concentrate 
on a structure for  the  compiler  that is natural  for  the  job.    Since  the structure naturally fits the job, it is 
almost bound to be simple and transparent.   Adding  capability doesn't have to change that basic  structure. 
We  can  simply expand things like the  file structure or add an optimization layer.  I guess  my  feeling  is that, 
back when resources were tight, the structures people ended up  with  were  artificially warped to make them 
work under those conditions, and weren't optimum  structures  for  the  problem at hand.

CONCLUSION
Anyway, that's my arm-waving  guess  as to how we've been able to keep things simple.  We started with 
something simple and  let it evolve  naturally,  without  trying  to   force   it   into  some traditional mold.

We're going to  press on with this.  I've given you a list of the areas  we'll  be  covering in future installments. 
With  those installments, you  should  be  able  to  build  complete, working compilers for just about any 
occasion, and build them simply.  If you REALLY want to build production-quality compilers,  you'll be able to do 
that, too.

For those of you who are chafing at the bit for more parser code, I apologize for this digression.  I just thought 
you'd  like  to have things put  into  perspective  a  bit.  Next time, we'll get back to the mainstream of the 
tutorial.

So far, we've only looked at pieces of compilers,  and  while  we have  many  of  the  makings  of a complete 
language, we  haven't talked about how to put  it  all  together.    That  will  be the subject of our next  two 
installments.  Then we'll press on into the new subjects I listed at the beginning of this installment.

See you then.

INTRODUCTION
In  the  previous  installments,  we  have  learned  many of  the techniques required to  build  a full-blown 
compiler.  We've done both  assignment   statements   (with   Boolean   and  arithmetic expressions),  relational 
operators, and control constructs.   We still haven't  addressed procedure or function calls, but even so we 



could  conceivably construct a  mini-language  without  them. I've  always  thought  it would be fun to see just 
how  small  a language  one  could  build  that  would still be useful.   We're ALMOST in a position to do that 
now.  The  problem  is: though we know  how  to  parse and translate the constructs, we still don't know quite 
how to put them all together into a language.

In those earlier installments, the  development  of  our programs had  a decidedly bottom-up flavor.  In  the  case 
of  expression parsing,  for  example,  we  began  with  the  very lowest  level constructs, the individual 
constants  and  variables,  and worked our way up to more complex expressions.

Most people regard  the  top-down design approach as being better than  the  bottom-up  one.  I do too,  but  the 
way  we  did  it certainly seemed natural enough for the kinds of  things  we were parsing.

You mustn't get  the  idea, though, that the incremental approach that  we've  been  using  in  all these tutorials 
is  inherently bottom-up.  In  this  installment  I'd  like to show you that the approach can work just as well when 
applied from the top down ... maybe better.  We'll consider languages such as C and Pascal, and see how 
complete compilers can be built starting from the top.

In the next installment, we'll  apply the same technique to build a  complete  translator  for a subset of the KISS 
language, which I'll be  calling  TINY.    But one of my goals for this series is that you will  not only be able to see 
how a compiler for TINY or KISS  works,  but  that you will also be able to design and build compilers for your 
own languages.  The C and Pascal examples will help.    One  thing I'd like you  to  see  is  that  the  natural 
structure of the compiler depends very much on the language being translated, so the simplicity and  ease  of 
construction  of the compiler  depends  very  much  on  letting the language  set  the program structure.

It's  a bit much to produce a full C or Pascal compiler here, and we won't try.   But we can flesh out the top 
levels far enough so that you can see how it goes.

Let's get started.

THE TOP LEVEL
One of the biggest  mistakes  people make in a top-down design is failing  to start at the true top.  They think 
they know what the overall structure of the  design  should be, so they go ahead and write it down.

Whenever  I  start a new design, I always like to do  it  at  the absolute beginning.   In  program design language 
(PDL), this top level looks something like:

     begin
        solve the problem
     end

OK, I grant  you that this doesn't give much of a hint as to what the next level is, but I  like  to  write it down 
anyway, just to give me that warm feeling that I am indeed starting at the top.

For our problem, the overall function of a compiler is to compile a complete program.  Any definition of the 
language,  written in BNF,  begins here.  What does the top level BNF look like?  Well, that depends quite a bit 
on the language to be translated.  Let's take a look at Pascal.

THE STRUCTURE OF PASCAL
Most  texts  for  Pascal  include  a   BNF   or  "railroad-track" definition of the language.  Here are the first few 
lines of one:**

     <program> = <program-header> <block> '.'

     <program-header> = PROGRAM <ident>



     <block> = <declarations> <statements>

We can write recognizers  to  deal  with  each of these elements, just as we've done before.  For each one, we'll 
use  our familiar single-character tokens to represent the input, then flesh things out a little at a time.    Let's 
begin with the first recognizer: the program itself.
                              
To translate this, we'll  start  with a fresh copy of the Cradle. Since we're back to single-character  names, we'll 
just use a 'p' to stand for 'PROGRAM.'

**Begin with file: Cradle9A.c

To a fresh copy of the cradle, add the following code, and insert a call to it from the main program:**

**Add to Prototypes:
  void Prog(void);   void Prolog(char);
  void Epilog(char);

void Prog() /* Parse and Translate A Program */
{    char Name;

     Match('p'); /* Handles program header part */
     Name = GetName();
     Prolog('Name');
     Match('.');
     Epilog('Name');
}
/*-------------------------------*/

The procedures  Prolog and Epilog perform whatever is required to let the program interface with the operating 
system,  so  that it can execute as a program.  Needless to  say,  this  part  will be VERY OS-dependent. 
Remember, I've been emitting code for a 68000 running under the OS I use, which is SK*DOS.   I  realize most 
of you are using PC's  and  would rather see something else, but I'm in this thing too deep to change now!

Anyhow, SK*DOS is a  particularly  easy OS to interface to.  Here is the code for Prolog and Epilog:**

void Prolog() /* Write the Prolog */
{
    EmitLn("WARMST EQU $A01E");
}
/*-------------------------------*/

void Epilog(char Name) /* Write the Epilog */
{   char a_string[10];

    EmitLn("DC WARMST");
    strcpy(a_string, "END  ");
    a_string[4] = Name;
    EmitLn(a_string);
}
/*-------------------------------*/
                              
As usual, add  this  code  and  try  out the "compiler."  At this point, there is only one legal input:

     px.   (where x is any single letter, the program name)

Well,  as  usual  our first effort is rather unimpressive, but by now  I'm sure you know that things  will  get  more 



interesting. There is one important thing to  note:   THE OUTPUT IS A WORKING, COMPLETE, AND 
EXECUTABLE PROGRAM (at least after it's assembled).

This  is  very  important.  The  nice  feature  of  the  top-down approach is that at any stage you can  compile  a 
subset  of the complete language and get  a  program that will run on the target machine.    From here on, then, 
we  need  only  add  features  by fleshing out the language constructs.  It's all  very  similar to what we've been 
doing all along, except that we're approaching it from the other end.

FLESHING IT OUT
To flesh out  the  compiler,  we  only have to deal with language features  one by one.  I like to start with a stub 
procedure that does  nothing, then add detail in  incremental  fashion.    Let's begin  by  processing  a block, in 
accordance with its PDL above. We can do this in two stages.  First, add the null procedure:**

**Add to Prototypes:
  void DoBlock(char);   void Declarations(void);
  void Statements(void);  void Labels(void);
  void Constants(void);   void Types(void);
  void Variables(void);   void DoProcedure(void);
  void DoFunction(void);

void DoBlock(char Name) /* Parse and Translate a Pascal Block */
{
}
/*-------------------------------*/

and modify Prog to read:

void Prog() /* Parse and Translate A Program */
{    char Name;

     Match('p'); /* Handles program header part */
     Name = GetName();
     Prolog();
     DoBlock(Name);
     Match('.');
     Epilog(Name);
}
/*-------------------------------*/

That certainly  shouldn't change the behavior of the program, and it doesn't.  But now the  definition  of Prog is 
complete, and we can proceed to flesh out DoBlock.  That's done right from its BNF definition:

void DoBlock(char Name) /* Parse and Translate a Pascal Block */
{   char a_string[2] = {0,0};

    a_string[0] = Name;
    Declarations();
    PostLabel(a_string);
    Statements();
}
/*-------------------------------*/

The  procedure  PostLabel  was  defined  in  the  installment  on branches.**

I probably need to  explain  the  reason  for inserting the label where I have.  It has to do with the operation of 



SK*DOS.  Unlike some OS's,  SK*DOS allows the entry point to the main  program to be  anywhere in the 
program.  All you have to do is to give  that point a name.  The call  to  PostLabel puts that name just before the 
first executable statement  in  the  main  program.  How does SK*DOS know which of the many labels is the 
entry point, you ask? It's the one that matches the END statement  at  the  end  of the program.

OK,  now  we  need  stubs  for  the  procedures Declarations  and Statements.  Make them null procedures as 
we did before.**

void Statements()
{
}
/*-------------------------------*/

void Declarations()
{
}
/*-------------------------------*/

Does the program  still run the same?  Then we can move on to the next stage.

DECLARATIONS
The BNF for **declarations is:

     <declarations> = ( <label list>    |
                        <constant list> |
                        <type list>     |
                        <variable list> |
                        <procedure>     |
                        <function>         )*
                              

(Note  that  I'm  using the more liberal definition used by Turbo Pascal.  In the standard Pascal definition, each 
of  these parts must be in a specific order relative to the rest.)

As  usual,  let's  let a single character represent each of these declaration types.  The new form of Declarations 
is:**

void Declarations() /* Parse and Translate the Declaration Part */
{
    while(strchr("lctvpf", Look)
    {   switch(Look)
        {   case 'l':
                Labels();
                break;
            case 'c':
                Constants();
                break;
            case 't':
                Types();
                break;
            case 'v':
                Variables();
                break;
            case 'p':
                DoProcedure();
                break;
            case 'f':



                DoFunction();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/

Of course, we need stub  procedures for each of these declaration types.  This time,  they  can't  quite  be null 
procedures, since otherwise we'll end up with an infinite While loop.  At  the very least, each recognizer must 
eat  the  character that invokes it. Insert the following procedures:**

void Labels() /* Process Label Statement */
{
    Match('l');
}
/*-------------------------------*/

void Constants() /* Process Const Statement */
{
    Match('c');
}
/*-------------------------------*/

void Types() /* Process Type Statement */
{
    Match('t');
}
/*-------------------------------*/

void Variables() /* Process Var Statement */
{
   Match('v');
}
/*-------------------------------*/

void DoProcedure() /* Process Procedure Definition */
{
   Match('p');
}
/*-------------------------------*/

void DoFunction() /* Process Function Definition */
{
    Match('f');
}
/*-------------------------------*/

Now try out the  compiler  with a few representative inputs.  You can  mix  the  declarations any way you like, as 
long as the last character  in  the  program is  '.'  to  indicate  the  end  of  the program.  Of course,  none  of 
the declarations actually declare anything, so you don't need  (and can't use) any characters other than those 



standing for the keywords.

We can flesh out the statement  part  in  a similar way.  The BNF for it is:**

     <statements> = <compound statement>

     <compound statement> = BEGIN <statement>
                                   (';' <statement>) END

Note that statements can  begin  with  any identifier except END. So the first stub form of procedure Statements 
is:**
                              

void Statements() /* Parse and Translate the Statement Part */
{
    Match('b');
    while(Look != 'e')
    {   _GetChar();
    }
    Match('e');
}
/*-------------------------------*/

At  this  point  the  compiler   will   accept   any   number  of declarations, followed by the  BEGIN  block  of the 
main program. This  block  itself  can contain any characters at all (except an END), but it must be present.

The simplest form of input is now

     'pxbe.'

Try  it.    Also  try  some  combinations  of  this.   Make  some deliberate errors and see what happens.

At this point you should be beginning to see the drill.  We begin with a stub translator to process a program, then 
we  flesh  out each procedure in turn,  based  upon its BNF definition.  Just as the lower-level BNF definitions 
add detail and elaborate upon the higher-level ones, the lower-level  recognizers  will  parse more detail  of  the 
input  program.    When  the  last stub has been expanded,  the  compiler  will  be  complete.    That's  top-down 
design/implementation in its purest form.

You might note that even though we've been adding procedures, the output of the program hasn't changed. 
That's as  it  should  be. At these  top  levels  there  is  no  emitted code required.  The recognizers are 
functioning as just that: recognizers.  They are accepting input sentences, catching bad ones, and channeling 
good input to the right places, so  they  are  doing their job.  If we were to pursue this a bit longer, code would 
start to appear.

The  next  step  in our expansion should  probably  be  procedure Statements.  The Pascal definition is:

    <statement>  ::= <simple statement> | <structured statement>

    <simple statement> ::= <assignment> | <procedure call> | null

    <structured statement> ::= <compound statement> |
                               <if statement>       |
                               <case statement>     |
                               <while statement>    |
                               <repeat statement>   |
                               <for statement>      |
                               <with statement>



These  are  starting  to look familiar.  As a matter of fact, you have already gone  through  the process of parsing 
and generating code for both assignment statements and control structures.  This is where the top level meets 
our bottom-up  approach  of previous sessions.  The constructs will be a little  different  from those we've  been 
using  for KISS, but the differences are nothing you can't handle.

I  think  you can get the picture now as to the  procedure.    We begin with a complete BNF  description of the 
language.  Starting at  the  top  level, we code  up  the  recognizer  for  that  BNF statement, using stubs  for 
the next-level recognizers.  Then we flesh those lower-level statements out one by one.

As it happens, the definition of Pascal is  very  compatible with the  use of BNF, and BNF descriptions  of  the 
language  abound. Armed  with  such   a   description,  you  will  find  it  fairly straightforward to continue the 
process we've begun.

You  might  have  a go at fleshing a few of these constructs out, just  to get a feel for it.  I don't expect you  to 
be  able  to complete a Pascal compiler  here  ...  there  are too many things such  as  procedures  and types 
that we haven't addressed yet ... but  it  might  be helpful to try some of the more familiar ones. It will do  you 
good  to  see executable programs coming out the other end.

If I'm going to address those issues that we haven't covered yet, I'd rather  do  it  in  the context of KISS.  We're 
not trying to build a complete Pascal  compiler  just yet, so I'm going to stop the expansion of Pascal here. 
Let's  take  a  look  at  a very different language.

THE STRUCTURE OF C
The C language is quite another matter, as you'll see.   Texts on C  rarely  include  a BNF definition of  the 
language.  Probably that's because the language is quite hard to write BNF for.

One reason I'm showing you these structures now is so that  I can impress upon you these two facts:

 (1) The definition of  the  language drives the structure of the compiler.  What works for one 
      language may be a disaster for  another.    It's  a very bad idea to try to  force  a  given 
      structure upon the compiler.  Rather, you should let the BNF drive the structure, as we have 
      done here.
                             
 (2) A language that is hard to write BNF for  will  probably  be  hard  to  write  a compiler for, as 
      well.  C  is  a  popular  language,  and  it  has  a  reputation  for  letting you  do  virtually  
      anything that is possible to  do.    Despite  the success of Small C, C is _NOT_ an easy 
      language to parse.

A C program has  less  structure than its Pascal counterpart.  At the top level, everything in C is a static 
declaration, either of data or of a function.  We can capture this thought like this:**

     <program> = ( <global declaration> )*

     <global declaration> = <data declaration>  |
                              <function>

In Small C, functions  can  only have the default type int, which is not declared.  This makes  the  input easy to 
parse: the first token is either "int," "char," or the name  of  a  function.   In Small  C, the preprocessor 
commands are  also  processed  by  the compiler proper, so the syntax becomes:**

     <global declaration>   = '#' <preprocessor command>  |
                              'int' <data list>           |
                              'char' <data list>          |
                              <ident> <function body>     |



Although we're really more interested in full C  here,  I'll show you the  code corresponding to this top-level 
structure for Small C.**

void Prog() /* Parse and Translate A Program */
{    char Name, eof=255;

    while(Look != eof)
    {   switch(Look)
        {   case '#':
                PreProc();
                break;
            case 'i':
                IntDecl();
                break;
            case 'c':
                CharDecl();
                break;
            default:
                DoFunction();
                break;
        }
    }
}
/*-------------------------------*/

Note that I've had to use a ^Z to indicate the end of the source. C has no keyword such as END or the '.' to 
otherwise indicate the end.

With full C,  things  aren't  even  this easy.  The problem comes about because in full C, functions can also have 
types.   So when the compiler sees a  keyword  like  "int,"  it still doesn't know whether to expect a  data 
declaration  or a function definition. Things get more  complicated  since  the  next token may not be a name  ...  
it may start with an '*' or '(', or combinations of the two.

More specifically, the BNF for full C begins with:**

     <program> = ( <top-level decl> )*

     <top-level decl> = <function def> | <data decl>

     <data decl> = [<class>] <type> <decl-list>

     <function def> = [<class>] [<type>] <function decl>

You  can  now  see the problem:   The  first  two  parts  of  the declarations for data and functions can be the 
same.   Because of the  ambiguity  in  the grammar as  written  above,  it's  not  a suitable  grammar  for  a 
recursive-descent  parser.     Can  we transform it into one that is suitable?  Yes, with a little work. Suppose we 
write it this way:**

     <top-level decl> = [<class>] <decl>

     <decl> = <type> <typed decl> | <function decl>

     <typed decl> = <data list> | <function decl>

We  can  build  a  parsing  routine  for  the   class   and  type definitions, and have them store away their 
findings  and  go on, without their ever having to "know" whether a function or  a data declaration is being 



processed.

To begin, key in the following version of the main program:**

void main() /* Main Program */
{   char eof=255; /* ^Z */

    Init();
    while(Look != eof)
    {   GetClass();
        GetType();
        TopDecl();
    }
}
/*-------------------------------*/

For the first round, just make the three procedures stubs that do nothing _BUT_ call GetChar.**

**Add to Prototypes:
  void TopDecl(void); void GetType(void);
  void GetClass(void);  void CharDecl(void);
  void IntDecl(void);   void PreProc(void);

void GetClass()
{
    _GetChar();
}
/*-------------------------------*/

void GetType()
{
    _GetChar();
}
/*-------------------------------*/

void TopDecl()
{
    _GetChar();
}
/*-------------------------------*/

void PreProc()
{
}
/*-------------------------------*/

void IntDecl()
{
}
/*-------------------------------*/

void CharDecl()
{
}
/*-------------------------------*/

Does this program work?  Well, it would be hard put NOT to, since we're not really asking it to do anything.  It's 



been said that a C compiler will accept virtually any input without choking.  It's certainly true of THIS  compiler, 
since in effect all it does is to eat input characters until it finds a ^Z.

Next, let's make  GetClass  do something worthwhile.  Declare the global variable**

**Add to Global Vars:
  char Class;

and change GetClass to do the following:**

void GetClass() /*  Get a Storage Class Specifier */
{
    if(strchr("axs", Look))
    {   Class = Look;
        _GetChar();
    }
    else
    {   Class = 'a';
    }
}
/*-------------------------------*/

Here, I've used three  single  characters  to represent the three storage classes "auto," "extern,"  and  "static."  
These are not the only three possible classes ... there are also "register" and "typedef," but this should  give 
you the picture.  Note that the default class is "auto."

We  can  do  a  similar  thing  for  types.   Enter the following procedure next:

void GetType() /*  Get a Type Specifier */
{
    Typ = ' ';
    if(Look == 'u')
    {   Sign = 'u';
        Typ = 'i';
        _GetChar();
    }
    else
    {   Sign = 's';
    }
    if(strchr("ilc", Look))
    {   Typ = Look;
        _GetChar();
    }
}
/*-------------------------------*/

Note that you must add two more global variables, Sign and Typ.

**Add to Global Vars:
  char Typ;
  char Sign;

With these two procedures in place, the compiler will process the class and type definitions and store away their 
findings.  We can now process the rest of the declaration.

We  are by no means out of the woods yet, because there are still many complexities just in the definition of the 
type,  before we even get to the actual data or function names.  Let's pretend for the moment that we have 
passed all those gates, and that the next thing in the  input stream is a name.  If the name is followed by a left 



paren, we have a function declaration.  If not, we have at least one data item,  and  possibly a list, each element 
of which can have an initializer.

Insert the following version of TopDecl:**

void TopDecl() /* Process a Top-Level Declaration */
{   char Name;

    Name = GetName();
    if(Look == '(')
    {   DoFunc(Name);
    }
    else
    {   DoData(Name);
    }
}
/*-------------------------------*/

(Note that, since we have already read the name, we must  pass it along to the appropriate routine.)

Finally, add the two procedures DoFunc and DoData:**

**Add to Prototypes:
  void DoFunc(char n);
  void DoData(char);

void DoFunc(char n) /* Process a Function Definition */
{
    Match('(');
    Match(')');
    Match('{');
    Match('}');

    if(Typ == ' ')
    {   Typ = 'i';
    }
    printf("%c %c %c function %c\n", Class,Sign,Typ,n);
    Match(';');
}
/*-------------------------------*/

void DoData(char n) /* Process a Data Declaration */
{
    if(Typ == ' ')
    {   Expected("Type declaration");
    }
    printf("%c %c %c data %c\n", Class,Sign,Typ,n);
    while(Look == ',')
    {   Match(',');
        n = GetName();
        printf("%c %c %c data %c\n", Class,Sign,Typ,n);
    }
    Match(';');
}
/*-------------------------------*/



Since  we're  still  a long way from producing executable code, I decided to just have these two routines tell us 
what they found.

OK, give this program a try.    For data declarations, it's OK to give a list separated by commas.  We  can't 
process initializers as yet.  We also can't process argument lists for  the functions, but the "(){}" characters 
should be there.

**Try: aucf(){};^Z
auia,b,c;^Z
xla,b,c;^Z

We're still a _VERY_ long way from having a C compiler,  but what we have is starting to process the right kinds 
of inputs,  and is recognizing both good  and  bad  inputs.    In  the  process, the natural structure of the compiler 
is starting to take form.

Can we continue this until we have something that acts  more like a compiler. Of course we can.  Should we? 
That's another matter. I don't know about you, but I'm beginning to get dizzy, and we've still  got  a  long  way  to 
go  to  even  get  past   the  data declarations.

At  this  point,  I think you can see how the  structure  of  the compiler evolves from the language  definition. 
The structures we've seen for our  two  examples, Pascal and C, are as different as night and day.  Pascal was 
designed at least partly to be easy to parse, and that's  reflected  in the compiler.  In general, in Pascal there is 
more structure and we have a better idea  of what kinds of constructs to expect at any point.  In  C,  on the other 
hand,  the  program  is  essentially  a  list   of  declarations, terminated only by the end of file.

We  could  pursue  both  of  these structures much  farther,  but remember that our purpose here is  not  to 
build a Pascal or a C compiler, but rather to study compilers in general.  For those of you  who DO want to deal 
with Pascal or C, I hope I've given  you enough of a start so that you can  take  it  from  here (although you'll 
soon need some of the stuff we still haven't  covered yet, such as typing and procedure calls).    For the rest of 
you, stay with me through the next installment.  There, I'll be leading you through the development of a complete 
compiler for TINY, a subset of KISS.

See you then.

INTRODUCTION
In the last installment, I showed you the general  idea  for  the top-down development of  a  compiler.    I gave 
you the first few steps  of  the process for compilers for  Pascal  and  C,  but  I stopped  far  short  of  pushing  it  
through to completion.   The reason was simple: if we're going to produce  a  real, functional compiler  for  any 
language, I'd rather  do  it  for  KISS,  the language that I've been defining in this tutorial series.

In this installment, we're going to do just that, for a subset of KISS which I've chosen to call TINY.

The process  will be essentially that outlined in Installment IX, except  for  one  notable  difference.   In that 
installment,  I suggested  that  you  begin  with  a full BNF description of  the language.  That's fine for 
something like Pascal or C,  for which the language definition is  firm.   In the case of TINY, however, we don't 
yet have a full  description  ... we seem to be defining the language as we go.  That's OK.    In  fact,  it's 
preferable, since we can tailor the language  slightly  as we go, to keep the parsing easy.

So in the development  that  follows,  we'll  actually be doing a top-down development of BOTH the  language 
and its compiler.  The BNF description will grow along with the compiler.

In this process, there will be a number of decisions to  be made, each of which will influence the BNF and 
therefore the  nature of the language.   At  each  decision  point I'll try to remember to explain  the  decision  and 
the rationale behind my choice.  That way, if you happen to hold a different opinion and would prefer a different 
option, you can choose it instead.  You  now  have  the background  to  do  that.  I guess the important thing to 
note is that  nothing  we  do  here  is  cast  in  concrete.  When YOU'RE designing YOUR language, you should 
feel free to do it YOUR way.



Many of you may be asking at this point: Why bother starting over from  scratch?  We had a working subset of 
KISS as the outcome of Installment  VII  (lexical  scanning).  Why not just extend it as needed?  The  answer  is 
threefold.    First of all, I have been making  a  number  of changes to further simplify the program ... changes 
like  encapsulating  the  code generation procedures, so that  we  can  convert to a different target machine 
more easily. Second, I want you to see how the development can indeed  be done from the top down as outlined 
in the last installment.   Finally, we both need the practice.  Each time I go through this exercise, I get a little 
better at it, and you will, also.

GETTING STARTED
Many  years  ago  there were languages called  Tiny  BASIC,  Tiny Pascal, and Tiny C, each of which was a 
subset of its parent full language.  Tiny BASIC,  for  example,  had  only single-character variable names and 
global variables.   It supported only a single data type.  Sound familiar?  At this point we have almost all the tools 
we need to build a compiler like that.

Yet a language called Tiny-anything  still  carries  some baggage inherited from its parent language.   I've often 
wondered if this is a  good  idea.    Granted,  a  language based upon some parent language will have the 
advantage  of  familiarity, but there may also  be  some  peculiar syntax carried over from the parent that may 
tend  to add unnecessary complexity to the compiler. (Nowhere is this more true than in Small C.)

I've wondered just how small and simple a compiler could  be made and  still  be  useful, if it were designed from 
the outset to be both easy to use and to  parse.    Let's find out.  This language will just be called "TINY," period. 
It's a subset of KISS, which I  also  haven't  fully  defined,  so  that  at  least  makes  us consistent (!).  I suppose 
you could call it TINY KISS.  But that opens  up a whole can of worms involving  cuter  and  cuter  (and perhaps 
more risque) names, so let's just stick with TINY.

The main limitations  of  TINY  will  be because of the things we haven't yet covered, such as data types.  Like 
its cousins Tiny C and Tiny BASIC,  TINY  will  have  only one data type, the 16-bit integer.    The  first  version 
we  develop  will also  have  no procedure  calls  and  will  use single-character variable names, although as you 
will see we can remove these restrictions without much effort.

The language I have in mind will share some of the  good features of  Pascal,  C,  and Ada.  Taking a lesson 
from the comparison of the Pascal and  C  compilers in the previous installment, though, TINY will have a 
decided Pascal flavor.  Wherever  feasible,    a language structure will  be  bracketed by keywords or symbols, 
so that  the parser will know where it's  going  without  having  to guess.

One other ground rule:  As we go, I'd like  to  keep the compiler producing real, executable code.  Even though it 
may not  DO much at the beginning, it will at least do it correctly.

Finally,  I'll  use  a couple of Pascal  restrictions  that  make sense:  All data and procedures must be declared 
before  they are used.  That makes good sense,  even  though for now the only data type we'll use  is a word. 
This rule in turn means that the only reasonable place to put the  executable code for the main program is at the 
end of the listing.

The top-level definition will be similar to Pascal:

     <program> ::= PROGRAM <top-level decl> <main> '.'

Already, we've reached a decision point.  My first thought was to make the main block optional.   It  doesn't 
seem to make sense to write a "program" with no main program, but it does make sense if we're  allowing  for 
multiple modules, linked together.    As  a matter of fact,  I intend to allow for this in KISS.  But then we begin  to 
open up a can of worms that I'd rather leave closed for now.  For example, the  term "PROGRAM" really 
becomes a misnomer. The MODULE of Modula-2 or the Unit of Turbo Pascal would  be more appropriate. 
Second,  what  about  scope  rules?    We'd  need a convention for  dealing  with  name  visibility  across 
modules. Better  for  now  to  just  keep  it  simple  and ignore the idea altogether.

There's also a decision in choosing to require  the  main program to  be  last.    I  toyed  with  the idea of making 



its  position optional,  as  in  C.  The nature of SK*DOS, the OS I'm compiling for, make this very easy to do. 
But  this  doesn't  really make much sense in view of the Pascal-like requirement  that  all data and procedures 
be declared before they're referenced.  Since the main  program can only call procedures  that  have  already 
been declared, the only position that makes sense is at the end,  a la Pascal.

**Begin with file: Cradle10.c
**Note: the following assembly code and header information can be assembled with the shareware,  A86 
Assembler to produce MS-DOS  '.com'  binary type executables.

Given  the  BNF  above, let's write a parser that just recognizes the brackets:**

**Add to Prototypes:
  void Prog(void); void Header(void);
  void Prolog(); void Epilog(void);

void Prog() /* Parse and Translate A Program */
{
   Match('p');
   Header();
   Prolog();
   Match('.');
   Epilog();
}
/*-------------------------------*/

The procedure Header just emits  the startup code required by the assembler:**

void Header() /* Write Header Info */
{
    printf(";\tTINY Compiler\n");
    EmitLn("jmp   START");
}
/*-------------------------------*/

The procedures Prolog and  Epilog  emit  the code for identifying the main program, and for returning to the 
OS:**

void Prolog() /* Write the Prolog */
{
    printf("START\tPROC\tNEAR\n");
    PostLabel(";MAIN:..........................");
    printf("\n");
}
/*-------------------------------*/

void Epilog() /* Write the Epilog */
{
    PostLabel("\nEND");
    EmitLn("INT   20H");
    printf("START\tENDP\n");
}
/*-------------------------------*/

The  main program just calls Prog, and then  looks  for  a  clean ending:**



void main() /* Main Program */
{
    Init();
    Prog();
    if(Look != '\n')
    {   _Abort("Unexpected data after \'.\'\n");
    }
}
/*-------------------------------*/

At this point, TINY  will  accept  only  one input "program," the null program:

     PROGRAM .   (or 'p.' in our shorthand.)

Note, though, that the  compiler  DOES  generate correct code for this program.  It will run, and do  what  you'd 
expect  the null program to do, that is, nothing but return gracefully to the OS.

As a matter of interest, one of my  favorite  compiler benchmarks is to compile, link,  and  execute  the  null 
program in whatever language   is   involved.     You  can  learn  a  lot  about  the implementation by measuring 
the  overhead  in  time  required to compile what should be a trivial case.  It's also  interesting to measure the 
amount of code produced.  In many compilers, the code can be fairly large, because they always include  the 
whole run-time  library whether they need it or not.    Early  versions  of Turbo Pascal produced a 12K object file 
for  this  case.    VAX C generates 50K!

The  smallest  null  programs  I've  seen are those  produced  by Modula-2 compilers, and they run about 200-
800 bytes.

In the case of TINY, we HAVE no run-time library  as  yet, so the object code is indeed tiny:  two  bytes.    That's 
got  to  be a record, and it's  likely  to  remain  one since it is the minimum size required by the OS.

The  next step is to process the code for the main program.  I'll use the Pascal BEGIN-block:

     <main> ::= BEGIN <block> END

Here,  again,  we  have made a decision.  We could have chosen to require a "PROCEDURE MAIN" sort of 
declaration, similar to C.   I must  admit  that  this  is  not  a bad idea at all ...  I  don't particularly  like  the 
Pascal  approach  since I tend  to  have trouble locating the main  program  in a Pascal listing.  But the 
alternative is a little awkward, too, since you have to deal with the  error condition where the user omits  the 
main  program  or misspells its name.  Here I'm taking the easy way out.

Another solution to the "where is the main program" problem might be to require a name for  the  program, and 
then bracket the main by

     BEGIN <name>
     END <name>

similar to the convention of  Modula  2.    This  adds  a  bit of "syntactic sugar" to the language.  Things like this 
are  easy to add or change to your liking, if the language is your own design.

To parse this definition of a main block,  change  procedure Prog to read:**

void Prog() /* Parse and Translate A Program */
{



   Match('p');
   Header();
   _Main();
   Match('.');
}
/*-------------------------------*/

and add the new procedure:**

**Add to Prototypes:
  void _Main(void);

void _Main() /* Parse and Translate a Main Program */
{
   Match('b');
   Prolog();
   Match('e');
   Epilog();
}
/*-------------------------------*/

Now, the only legal program is:

     PROGRAM BEGIN END . (or 'pbe.')

Aren't we making progress???  Well, as usual it gets better.  You might try some deliberate errors here, like 
omitting  the  'b' or the 'e', and see what happens.  As always,  the  compiler  should flag all illegal inputs.

DECLARATIONS
The obvious next step is to decide what we mean by a declaration. My  intent  here  is to have two kinds of 
declarations: variables and  procedures/functions.    At  the  top  level,   only  global declarations are allowed, 
just as in C.

For now, there  can  only be variable declarations, identified by the keyword VAR (abbreviated 'v'):

     <top-level decls>  ( <data declaration> )*

     <data declaration> = VAR <var-list>

Note that since there is only one variable type, there is no need to  declare the type.  Later on, for full KISS, we 
can easily add a type description.

The procedure Prog becomes:

void Prog() /* Parse and Translate A Program */
{
    Match('p');
    Header();
    TopDecls();
    _Main();
    Match('.');



}
/*-------------------------------*/

Now, add the two new procedures:**

**Add to Prototypes:
  void Decl(void);

void Decl() /* Process a Data Declaration */
{
    Match('v');
    _GetChar();
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{   char a_string[25];

    while(Look != 'b')
    {   switch(Look)
        {   case 'v':
                Decl();
                break;
            default:
                strcpy(a_string, "Unrecognized Keyword \' \'");
                a_string[22] = Look;
                _Abort(a_string);
                break;
        }
    }
}
/*-------------------------------*/

Note that at this point, Decl  is  just  a stub.  It generates no code, and it doesn't process a list ... every variable 
must occur in a separate VAR statement.

OK,  now  we  can have any  number  of  data  declarations,  each starting with a 'v' for VAR,  before  the 
BEGIN-block.  Try a few cases and see what happens.

DECLARATIONS AND SYMBOLS
That looks pretty good, but  we're still only generating the null program  for  output.    A  real compiler would 
issue  assembler directives to allocate storage for  the  variables.    It's about time we actually produced some 
code.

With  a  little  extra  code,  that's  an  easy  thing to do from procedure Decl.  Modify it as follows:**

void Decl() /* Process a Data Declaration */
{   char Name;

    Match('v');
    Name = GetName();
    Alloc(Name);
}
/*-------------------------------*/



The procedure Alloc just  issues  a  command  to the assembler to allocate storage:**

**Add to Prototypes:
  void Alloc(char);

void Alloc(char N) /*  Allocate Storage for a Variable */
{
    printf("%c\tDW  0\n", N);
}
/*-------------------------------*/

Give  this  one  a  whirl.    Try  an  input  that declares  some variables, such as:

     pvxvyvzbe.

See how the storage is allocated?    Simple, huh?  Note also that the entry point, "MAIN," comes out in the right 
place.

For the record, a "real" compiler would also have a  symbol table to record the variables being used.  Normally, 
the  symbol table is necessary to record the type  of  each variable.  But since in this case  all  variables  have 
the  same  type, we don't need a symbol  table  for  that reason.  As it turns out, we're going to find a symbol 
necessary  even without different types, but let's postpone that need until it arises.

Of course, we haven't really parsed the correct syntax for a data declaration, since it involves a variable list. 
Our version only permits a single variable.  That's easy to fix, too.

The BNF for <var-list> is**

     <var-list> = <ident> (, <ident>)*

Adding this syntax to Decl gives this new version:**

void Decl() /* Process a Data Declaration */
{   char Name;

    Match('v');
    Name = GetName();
    Alloc(Name);
    while(Look == ',')
    {   _GetChar();
        Fin();
        Name = GetName();
        Alloc(Name);
    }
}
/*-------------------------------*/

**and modify TopDecls to read:

void TopDecls() /* Parse and Translate Global Declarations */
{   char a_string[25];



    while(Look != 'b')
    {   switch(Look)
        {   case 'v':
                Decl();
                break;
            case '\n':
                Fin();
                break;
            default:
                strcpy(a_string, "Unrecognized Keyword \' \'");
                a_string[22] = Look;
                _Abort(a_string);
                break;
        }
    }
}
/*-------------------------------*/

OK, now compile this code and give it  a  try.    Try a number of lines of VAR declarations, try a list of several 
variables on one line, and try combinations of the two.  Does it work?
**Try: pvx,y,zbe.

pvx, <cr> y,z,abe.
pvx, <cr> y,z,a <cr> be.

**Note: <cr> = [enter] key.
**For output to an assembly disk file, type:  Cradle10 > x.asm
   and try any of the above examples.

INITIALIZERS
As long as we're dealing with data declarations, one thing that's always  bothered  me  about  Pascal  is  that  it 
doesn't  allow initializing  data items in the declaration.    That  feature  is admittedly sort of a frill, and it  may  be 
out  of  place  in a language that purports to  be  a minimal language.  But it's also SO easy to add that it seems 
a shame not  to  do  so.    The  BNF becomes:**

     <var-list> = <var> ( <var> )*

     <var> = <ident> [ = <integer> ]

Change Alloc as follows:

void Alloc(char N) /*  Allocate Storage for a Variable */
{   char Num;

    printf("%c\tDW  ", N);
    if(Look == '=')
    {   Match('=');
        Num = GetNum();
        printf("%c\n", Num);
    }
    else
    {   printf("0\n");
    }
}
/*-------------------------------*/



There you are: an initializer with six added lines of  **C.

OK, try this  version  of  TINY  and verify that you can, indeed, give the variables initial values.
**Try: pvx=1be.

pvx, <cr> y=1,zbe.
pvx, <cr> y=1,z=2 <cr> be.
pvx,y=1,z=2, <cr> abe.

By golly, this thing is starting to look  real!    Of  course, it still doesn't DO anything, but it looks good, doesn't it?

Before leaving this section, I should point out  that  we've used two versions of function GetNum.  One, the 
earlier one, returns a character value, a single digit.  The other accepts a multi-digit integer and returns an 
integer value.  Either one will work here, since **printf  will handle either type.  But there's no  reason to limit 
ourselves  to  single-digit  values  here,  so  the correct version to use is the one that returns an integer.  Here it 
is:**

**Change Prototype to:
  int GetNum(void);

int GetNum() /* Get a Number */
{   int Value;

    SkipWhite();
    Value = 0;
    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   Value = 10 * Value + Look - '0';
        _GetChar();
    }
    return Value;
}
/*-------------------------------*/

void Alloc(char N) /*  Allocate Storage for a Variable */
{   int Num;

    printf("%c\tDW  ", N);
    if(Look == '=')
    {   Match('=');
        Num = GetNum();
        printf("%d\n", Num);
    }
    else
    {   printf("0\n");
    }
}
/*-------------------------------*/

**Compile and try it using integer values.

As a matter  of  fact,  strictly  speaking  we  should  allow for expressions in the data field of the initializer, or at 
the very least  for  negative  values.  For  now,  let's  just  allow  for negative values by changing the code for 
Alloc as follows:**



void Alloc(char N) /*  Allocate Storage for a Variable */
{   int Num;

    printf("%c\tDW  ", N);
    if(Look == '=')
    {   Match('=');
        if(Look == '-')
        {   printf("%c", Look);
            Match('-');
        }
        Num = GetNum();
        printf("%d\n", Num);
    }
    else
    {   printf("0\n");
    }
}
/*-------------------------------*/

Now  you should be able to  initialize  variables  with  negative and/or multi-digit values.

THE SYMBOL TABLE
There's one problem  with  the  compiler  as it stands so far: it doesn't do anything to record a variable when we 
declare it.   So the compiler is perfectly content to allocate storage for several variables with the same name. 
You can easily verify this with an input like

     pvavavabe.

Here we've declared the variable A three times.  As you  can see, the compiler will  cheerfully  accept  that,  and 
generate three identical labels.  Not good.

Later on,  when we start referencing variables, the compiler will also let us reference variables  that don't exist. 
The assembler will  catch  both  of these error conditions, but it doesn't seem friendly at all to pass such errors 
along to the assembler.   The compiler should catch such things at the source language level.

So even though we don't need a symbol table to record data types, we ought to install  one  just to check for 
these two conditions. Since at this  point  we are still restricted to single-character variable names, the symbol 
table can be trivial.  To  provide for it, first add the following  declaration at the beginning of your program:**

**Add to Global Variables:
char ST[27];

and insert the following function:**

**Add to Prototypes:
  int InTable(char);

int InTable(char name) /* Look for Symbol in Table */
{   int ndx, rval=0;

    ndx = name - 'A';
    if(ST[ndx] != '\0')
    {   rval = 1;
    }
    return rval;
}



/*-------------------------------*/

We  also  need  to initialize the  table  to  all  blanks.    The following lines in Init will do the job:**

void Init() /* Initialize */
{   int i;

    LCount = 0;
    _GetChar();
    SkipWhite();
    for(i=0; i<26; i++)
    {   ST[i] = '\0';
    }
}
/*-------------------------------*/

Finally,  insert  the  following ** lines at  the  beginning  of Alloc:**

void Alloc(char N) /*  Allocate Storage for a Variable */
{   int Num, ndx;
    char a_string[30];

    if(InTable(N))
    {   strcpy(a_string, "Duplicate Variable Name \' \'");
        a_string[25] = N;
        _Abort(a_string);
    }
    ndx = N - 'A';
    ST[ndx] = 'v';
    printf("%c\tDW  ", N);
    if(Look == '=')
    {   Match('=');
        if(Look == '-')
        {   printf("%c", Look);
            Match('-');
        }
        Num = GetNum();
        printf("%d\n", Num);
    }
    else
    {   printf("0\n");
    }
}
/*-------------------------------*/

That  should  do  it.  The  compiler  will  now  catch  duplicate declarations.  Later, we can  also  use  InTable 
when generating references to the variables.

EXECUTABLE STATEMENTS
At this point, we can generate a null program that has  some data variables  declared  and  possibly initialized. 
But  so  far  we haven't arranged to generate the first line of executable code.

Believe  it or not, though, we almost  have  a  usable  language!  What's missing is the executable code that 
must go into  the main program.  But that code is just assignment statements and control statements ... all stuff  
we have done before.   So  it  shouldn't take us long to provide for them, as well.



The BNF definition given earlier  for the main program included a statement block, which we have so far 
ignored:**

     <main> = BEGIN <block> END

For now,  we  can  just  consider  a  block  to  be  a  series of assignment statements:**

     <block> = (Assignment)*

Let's start things off by adding  a  parser for the block.  We'll begin with a stub for the assignment statement:**

**Add to Prototypes:
  void Assignment(void);   void Block(void);
  void Clear(void);   void Negate(void);
  void LoadConst(int);   void LoadVar(char);
  void Push(void);   void PopAdd(void);
  void PopSub(void);   void PopMul(void);
  void PopDiv(void);   void Store(char);
  void Undefined(char);   void StoreA(void);

void Assignment() /* Parse and Translate an Assignment Statement */
{
    _GetChar();
}
/*-------------------------------*/

void Block() /* Parse and Translate a Block of Statements */
{
    while(Look != 'e')
    {   Assignment();
        Fin();
    }
}
/*-------------------------------*/

Modify procedure **_Main to call Block as shown below:**

void _Main() /* Parse and Translate a Main Program */
{
    Match('b');
    Prolog();
    Block();
    Match('e');
    Epilog();
}
/*-------------------------------*/

This version still won't generate any code for  the   "assignment statements" ... all it does is to eat characters 
until  it  sees the 'e' for 'END.'  But it sets the stage for what is to follow.

The  next  step,  of  course,  is  to  flesh out the code for  an assignment statement.  This  is  something  we've 
done many times before,  so  I  won't belabor it.  This time, though, I'd like to deal with the code generation a 
little differently.  Up till now, we've always just inserted the Emits that generate output code in line with  the 
parsing routines.  A little unstructured, perhaps, but it seemed the most straightforward approach, and made it 
easy to see what kind of code would be emitted for each construct.



However, I realize that most of you are using an  80x86 computer, so  the 68000 code generated is of little use 
to you.  Several of you have asked me if the CPU-dependent code couldn't be collected into one spot  where  it 
would  be easier to retarget to another CPU.  The answer, of course, is yes.

To  accomplish  this,  insert  the  following  "code  generation" routines:

void Clear() /* Clear the Primary Register */
{
    EmitLn("mov  ax, 0");
}
/*-------------------------------*/

void Negate() /* Negate the Primary Register */
{
    EmitLn("neg  ax");
}
/*-------------------------------*/

void LoadConst(int n) /* Load a Constant Value to Primary Register */
{
   Emit("mov  ax, ");
   printf("%d\n", n);
}
/*-------------------------------*/

void LoadVar(char Name) /* Load a Variable to Primary Register */
{   char a_string[12];

    if(! InTable(Name))
    {   Undefined(Name);
    }
    strcpy(a_string, "mov  ax,  ");
    a_string[9] = Name;
    EmitLn(a_string);
}
/*-------------------------------*/

void Push() /* Push Primary onto Stack */
{
    EmitLn("push ax");
}
/*-------------------------------*/

void PopAdd() /* Add Top of Stack to Primary */
{
    EmitLn("pop  bx");
    EmitLn("add  ax, bx");
}
/*-------------------------------*/

void PopSub() /* Subtract Primary from Top of Stack */
{



    EmitLn("pop  bx");
    EmitLn("sub  ax, bx");
    EmitLn("neg  ax");
}
/*-------------------------------*/

void PopMul() /* Multiply Top of Stack by Primary */
{
    EmitLn("pop  bx");
    EmitLn("mul  bx");
}
/*-------------------------------*/

void PopDiv() /* Divide Top of Stack by Primary */
{
    EmitLn("pop  bx");
    EmitLn("xchg  ax, bx");
    EmitLn("div  bx");
}
/*-------------------------------*/

void Store(char Nam) /* Store Primary to Variable */
{   char Name[2] = {0,0};

    Name[0] = Nam;
    if(! InTable(Nam))
    {   Undefined(Nam);
    }
    strcpy(a_string, "lea  di, ");
    strcat(a_string, Name);
    EmitLn(a_string);
    EmitLn("mov  [di], ax");
}
/*-------------------------------*/

The  nice  part  of  this  approach,  of  course,  is that we can retarget  the compiler to a new CPU  simply  by 
rewriting  these "code generator" procedures.  In  addition,  we  will  find later that we can improve the code 
quality by tweaking these routines a bit, without having to modify the compiler proper.

Note that both LoadVar  and  Store check the symbol table to make sure that the variable is defined.  The  error 
handler Undefined simply calls **_Abort:**

void Undefined(char N) /* Report an Undefined Identifier */
{   char a_string[25];

    strcpy(a_string, "Undefined Identifier  ");
    a_string[21] = N;
    _Abort(a_string);
}
/*-------------------------------*/

OK, we are now finally ready to begin processing executable code. We'll  do  that  by  replacing  the  stub 
version  of  procedure Assignment.



We've been down this  road  many times before, so this should all be familiar to you.    In fact, except for the 
changes associated with the code generation, we  could just copy the procedures from Part  VII.    Since we are 
making some changes, I won't just copy them, but we will go a little faster than usual.

The BNF for the assignment statement is:**

     <assignment> = <ident> = <expression>

     <expression> = <first term> ( <addop> <term> )*

     <first term> = <first factor> <rest>

     <term> = <factor> <rest>

     <rest> = ( <mulop> <factor> )*

     <first factor> = [ <addop> ] <factor>

     <factor> = <var> | <number> | ( <expression> )

This version of the BNF is  also  a bit different than we've used before ... yet another "variation on the theme of 
an expression." This particular version  has  what  I  consider  to  be  the best treatment  of  the  unary minus. 
As you'll see later, it lets us handle   negative  constant  values  efficiently.    It's   worth mentioning  here  that 
we  have  often  seen  the advantages  of "tweaking"  the  BNF  as we go, to help make the language easy to 
parse.    What  you're looking at here is a bit different:  we've tweaked  the  BNF  to make the CODE 
GENERATION  more  efficient! 
That's a first for this series.

Anyhow, the following code implements the BNF:**

**Add to Prototypes:
  void Factor(void); void NegFactor(void);
  void FirstFactor(void); void Multiply(void);
  void Divide(void); void Term1(void);
  void Term(void); void FirstTerm(void);
  void Add(void); void Subtract(void);
  void Expression(void);

void Factor() /* Parse and Translate a Math Factor */
{   char Name;
    int Num;

    if(Look == '(')
    {   Match('(');
        Expression();
        Match(')');
    }
    else if(isalpha(Look))
    {   Name = GetName();
        LoadVar(Name);
    }
    else
    {   Num = GetNum();
        LoadConst(Num);
    }
}
/*-------------------------------*/



void NegFactor() /* Parse and Translate a Negative Factor */
{   int Num;

    Match('-');
    if(isdigit(Look))
    {   Num = 0 - GetNum();
        LoadConst(Num);
    }
    else
    {   Factor();
        Negate();
    }
}
/*-------------------------------*/

void FirstFactor() /* Parse and Translate a Leading Factor */
{
    switch(Look)
    {   case '+':
           Match('+');
           Factor();
           break;
        case '-':
           NegFactor();
           break;
        default:
           Factor();
           break;
    }
}
/*-------------------------------*/

void Multiply() /* Recognize and Translate a Multiply */
{
    Match('*');
    Factor();
    PopMul();
}
/*-------------------------------*/

void Divide() /* Recognize and Translate a Divide */
{
    Match('/');
    Factor();
    PopDiv();
}
/*-------------------------------*/

void Term1() /* Common Code Used by Term and FirstTerm */
{
    while(IsMulop(Look))
    {   Push();
        switch(Look)



        {   case '*':
               Multiply();
               break;
            case '/':
               Divide();
               break;
            default:
               break;
        }
    }
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
    Factor();
    Term1();
}
/*-------------------------------*/

void FirstTerm() /* Parse and Translate a Leading Term */
{
    FirstFactor();
    Term1();
}
/*-------------------------------*/

void Add() /* Recognize and Translate an Add */
{
    Match('+');
    Term();
    PopAdd();
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */
{
    Match('-');
    Term();
    PopSub();
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
    FirstTerm();
    while(IsAddop(Look))
    {   Push();
        switch(Look)
        {   case '+':
               Add();
               break;
            case '-':
               Subtract();



               break;
            default:
               break;
        }
    }
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{   char Name;

    Name = GetName();
    Match('=');
    Expression();
    Store(Name);
}
/*-------------------------------*/

OK, if you've  got  all  this  code inserted, then compile it and check  it out.  You should  be  seeing  reasonable-
looking  code, representing a complete program that will  assemble  and execute.**
**Try: pva=1ba=a+2e.

pva=10,b=2,cbc=a-be.
pva=10,b=2, <cr> cbc=a*be.
pva=10,b=2,c <cr> bc=a/be.
pva,b,c <cr> ba=10*2 <cr> b=a+1e.
pva,b,cba=10/2 <cr> b=a*3 <cr> c=b/ae.

We have a compiler!

**Try redirecting output to a source file: Cradle10 > x.asm

BOOLEANS
The next step should also  be  familiar  to  you.    We  must add Boolean  expressions  and relational operations. 
Again,  since we've already dealt with them more than once,  I  won't elaborate much on them, except  where 
they  are  different from what we've done before.  Again, we won't just copy from other  files because I've 
changed a few things just a bit.  Most  of  the changes just involve encapsulating the machine-dependent parts 
as  we  did for the   arithmetic  operations.    I've  also  modified   procedure NotFactor  somewhat,  to  parallel 
the structure of FirstFactor. Finally,  I  corrected  an  error  in  the  object code  for  the relational operators:  The 
Scc instruction I used  only  sets the low 8 bits of D0.  We want all 16 bits set for a logical true, so I've added an 
instruction to sign-extend the low byte.

To begin, we're going to need some more recognizers:**

**Add to Prototypes:
   int IsOrop(char);   int IsRelop(char);
  void NotIt(void);   void PopOr(void);
  void PopXor(void);   void PopCompare(void);
  void SetEqual(void);   void SetNEqual(void);
  void SetGreater(void);  void SetLess(void);

void IsOrop(char ch) /* Recognize a Boolean Orop */
{   int rval=0;

    if((ch == '|') || (ch == '~'))



    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

int IsRelop(char ch) /* Recognize a Relop */
{   int rval=0;

    if(strchr("=#<>", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

Also, we're going to need some more code generation routines:**

void NotIt() /* Complement the Primary Register */
{
    EmitLn("not  ax");
}
/*-------------------------------*/

void PopAnd() /* AND Top of Stack with Primary */
{
    EmitLn("pop  bx");
    EmitLn("and  ax, bx");
}
/*-------------------------------*/

void PopOr() /* OR Top of Stack with Primary */
{
    EmitLn("pop  bx");
    EmitLn("or  ax, bx");
}
/*-------------------------------*/

void PopXor() /* XOR Top of Stack with Primary */
{
    EmitLn("pop  bx");
    EmitLn('xor  ax, bx");
}
/*-------------------------------*/

void PopCompare() /* Compare Top of Stack with Primary */
{
    EmitLn("pop  bx");
    EmitLn("cmp  ax, bx");
}
/*-------------------------------*/



void SetEqual() /* Set AX If Compare was = */
{
    EmitLn("pushf");
    EmitLn("pop  ax");
    EmitLn("and  ax, 40H");
    EmitLn("ror  ax, 6");
    EmitLn("neg  ax");
}
/*-------------------------------*/

void SetNEqual() /* Set AX If Compare was != */
{
    EmitLn("pushf");
    EmitLn("pop  ax");
    EmitLn("and  ax, 40H");
    EmitLn("ror  ax, 6");
    EmitLn("sub  ax, 1");
}
/*-------------------------------*/

void SetGreater() /* Set AX If Compare was > */
{
    EmitLn("pushf");
    EmitLn("pop  ax");
    EmitLn("and  ax, 80H");
    EmitLn("ror  ax, 7");
    EmitLn("neg  ax");
}
/*-------------------------------*/

void SetLess() /* Set AX If Compare was < */
{
    EmitLn("pop  bx");
    EmitLn("xchg ax, bx");
    EmitLn("cmp  ax, bx");
    EmitLn("pushf");
    EmitLn("pop  ax");
    EmitLn("and  ax, 80H");
    EmitLn("ror  ax, 7");
    EmitLn("neg  ax");
}
/*-------------------------------*/

All of this  gives us the tools we need.  The BNF for the Boolean expressions is:**

     <bool-expr> = <bool-term> ( <orop> <bool-term> )*

     <bool-term> = <not-factor> ( <andop> <not-factor> )*

     <not-factor> = [ '!' ] <relation>

     <relation> = <expression> [ <relop> <expression> ]



Sharp-eyed readers might  note  that this syntax does not include the non-terminal  "bool-factor" used in earlier 
versions.  It was needed then because I also allowed for the Boolean constants TRUE and FALSE.   But 
remember  that  in TINY there is no distinction made between Boolean and arithmetic  types ... they can be 
freely intermixed.   So there is really no  need  for  these  predefined values ... we can just use -1 and 0, 
respectively.

In C terminology, we could always use the defines:

     #define TRUE -1
     #define FALSE 0

(That is, if TINY had a  preprocessor.)   Later on, when we allow for  declarations  of  constants,  these  two 
values   will  be predefined by the language.

The reason that I'm harping on this is that  I've  already  tried the alternative, which is to  include TRUE and 
FALSE as keywords. The problem with that approach is that it  then  requires lexical scanning for EVERY 
variable name  in every expression.  If you'll recall,  I pointed out in Installment VII  that  this  slows  the compiler 
down considerably.  As long as  keywords  can't  be  in expressions, we need to do the scanning only at the 
beginning of every  new  statement  ...  quite  an improvement.  So using  the syntax above not only simplifies 
the parsing, but  speeds  up the scanning as well.

OK, given that we're  all  satisfied  with  the syntax above, the corresponding code is shown below:**
**Add to Prototypes:
  void Equals(void);   void NotEquals(void);
  void Less(void);   void Greater(void);
  void Relation(void);   void NotFactor(void);
  void BoolTerm(void);   void BoolOr(void);
  void BoolXor(void);   void BoolExpression(void);   

void Equals() /* Recognize and Translate a Relational "Equals" */
{
    Match('=');
    Expression();
    PopCompare();
    SetEqual();
}
/*-------------------------------*/

void NotEquals() /*Recognize and Translate a Relational "Not Equals"*/
{
    Match('#');
    Expression();
    PopCompare();
    SetNEqual();
}
/*-------------------------------*/

void Less() /* Recognize and Translate a Relational "Less Than" */
{
    Match('<');
    Expression();
    SetLess();
}
/*-------------------------------*/



void Greater() /*Recognize and Translate a Relational "Greater Than"*/
{
    Match('>');
    Expression();
    PopCompare();
    SetGreater();
}
/*-------------------------------*/

void Relation() /* Parse and Translate a Relation */
{
    Expression();
    if(IsRelop(Look))
    {   Push();
        switch(Look)
        {   case '=':
               Equals();
               break;
            case '#':
               NotEquals();
               break;
            case '<':
               Less();
               break;
            case '>':
               Greater();
               break;
            default:
               break;
        }
    }
}
/*-------------------------------*/

void NotFactor() /* Parse and Translate Boolean Factor w/Leading NOT */
{
    if(Look == '!')
    {   Match('!');
        Relation();
        NotIt();
    }
    else
    {   Relation();
    }
}
/*-------------------------------*/

void BoolTerm() /* Parse and Translate a Boolean Term */
{
    NotFactor();
    while(Look == '&')
    {   Push();
        Match('&');
        NotFactor();



        PopAnd();
    }
}
/*-------------------------------*/

void BoolOr() /* Recognize and Translate a Boolean OR */
{
    Match('|');
    BoolTerm();
    PopOr();
}
/*-------------------------------*/

void BoolXor() /* Recognize and Translate an Exclusive Or */
{
    Match('~');
    BoolTerm();
    PopXor();
}
/*-------------------------------*/

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
    BoolTerm();
    while(IsOrop(Look))
    {   Push();
        switch(Look)
        {   case '|':
               BoolOr();
               break;
            case '~':
               BoolXor();
               break;
            default:
               break;
        }
    }
}
/*-------------------------------*/

To tie it all together, don't forget to change the  references to Expression in  procedures Factor and 
Assignment so that they call BoolExpression instead.**

OK, if  you've  got  all  that typed in, compile it and give it a whirl.    First,  make  sure  you  can  still parse  an 
ordinary arithmetic expression.  Then, try a Boolean one.    Finally, make sure  that you can assign the results of 
relations.    Try,  for example:

     pvx,y,zbx=z>ye.

which stands for:

     PROGRAM
     VAR X,Y,Z
     BEGIN
     X = Z > Y



     END.

See how this assigns a Boolean value to X?

CONTROL STRUCTURES
We're almost home.   With  Boolean  expressions  in place, it's a simple  matter  to  add control structures.  For 
TINY, we'll only allow two kinds of them, the IF and the WHILE:**

     <if> = IF <bool-expression> <block> [ ELSE <block>] ENDIF

     <while> = WHILE <bool-expression> <block> ENDWHILE

Once  again,  let  me  spell  out the decisions implicit in  this syntax, which departs strongly from that of C or 
Pascal.  In both of those languages, the "body" of an IF or WHILE is regarded as a single  statement.  If you 
intend to use a block of more than one statement, you have to build a compound statement using BEGIN-END 
(in Pascal) or  '{}' (in C).  In TINY (and KISS) there is no such thing as a compound statement  ... single or 
multiple they're all just blocks to these languages.

In KISS, all the control structures will have explicit and unique keywords  bracketing  the  statement block, so 
there  can  be  no confusion as to where things begin  and  end.  This is the modern approach, used in such 
respected languages as Ada  and  Modula 2, and it completely eliminates the problem of the "dangling else."

Note  that I could have chosen to use the same keyword END to end all  the constructs, as is done in Pascal. 
(The closing '}' in C serves the same purpose.)  But this has always led  to confusion, which is why Pascal 
programmers tend to write things like

     end { loop }

or   end { if }

As I explained in  Part  V,  using  unique terminal keywords does increase  the  size  of the keyword list and 
therefore slows down the  scanning, but in this case it seems a small price to pay for the added insurance. 
Better  to find the errors at compile time rather than run time.

One last thought:  The two constructs above each  have  the  non-terminals

      <bool-expression> and <block>

juxtaposed with no separating keyword.  In Pascal we would expect the keywords THEN and DO in these 
locations.

I have no problem with leaving out these keywords, and the parser has no trouble either, ON CONDITION that 
we make no errors in the bool-expression part.  On  the  other hand, if we were to include these extra keywords 
we would get yet one more level of insurance at very little  cost,  and  I  have no problem with that, either. Use 
your best judgment as to which way to go.

OK, with that bit of explanation let's proceed.  As  usual, we're going to need some new  code generation 
routines.  These generate the code for conditional and unconditional branches:**

**Add to Prototypes:
  void Branch(char *); void BranchFalse(char *);
  void DoIf(void); void DoWhile(void);



void Branch(char *Label) /* Branch Unconditional  */
{   char a_string[20];

    strcpy(a_string, "jmp  ");
    strcat(a_string, Label);
    EmitLn(a_string);
}
/*-------------------------------*/

void BranchFalse(char *Label) /* Branch False */
{   char a_string[20];

    EmitLn("test ah, 11111111b");
    strcpy(a_string, "jz   ");
    strcat(a_string, Label);
    EmitLn(a_string);
}
/*-------------------------------*/

Except for the encapsulation of  the code generation, the code to parse the control constructs is the same as 
you've seen before:**

void DoIf() /* Recognize and Translate an IF Construct */
{   char L1[7], L2[7];

    Match('i');
    BoolExpression();
    strcpy(L1, NewLabel());
    strcpy(L2, L1);
    BranchFalse(L1);
    Block();
    if(Look == 'l')
    {   Match('l');
        strcpy(L2, NewLabel());
        Branch(L2);
        PostLabel(L1);
        Block();
    }
    PostLabel(L2);
    Match('e');
}
/*-------------------------------*/

void DoWhile() /* Parse and Translate a WHILE Statement */
{   char L1[7], L2[7];

    Match('w');
    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    PostLabel(L1);
    BoolExpression();
    BranchFalse(L2);
    Block();
    Match('e');



    Branch(L1);
    PostLabel(L2);
}
/*-------------------------------*/

To tie everything  together,  we need only modify procedure Block to recognize the "keywords" for the  IF  and 
WHILE.  As usual, we expand the definition of a block like so:**

     <block> = ( <statement> )*

where

     <statement> = <if> | <while> | <assignment>

The corresponding code is:

void Block() /* Parse and Translate a Block of Statements */
{
    while(! strchr("el", Look))
    {   switch(Look)
        {  case 'i':
              DoIf();
              break;
           case 'w':
              DoWhile();
              break;
           default:
              Assignment();
              Fin();
              break;
        }
        Fin();
    }
}
/*-------------------------------*/

OK,  add the routines I've given, compile and  test  them.    You should be able to parse the single-character 
versions  of  any of the control constructs.  It's looking pretty good!
**Try: pvxbix=0x=1lx=2ee.

pvx,y,zbx=z=y <cr> ix=0x=1lx=2ee.
pvx,y,zbx=z=y <cr> ix=0x=1lx=2e <cr> iz>0z=z-1ee.

**example 3 translates to:

Program:
Vars: X,Y,Z
Begin:

X = Z = Y
<enter>
IF X = 0

X = 1
ELSE X = 2
ENDIF
<enter>
IF Z > 0

Z = Z-1
ENDIF



END.

**Again, try sending the output to a source file:  Cradle10 > x.asm

As a matter  of  fact, except for the single-character limitation we've got a virtually complete version of TINY.  I 
call  it, with tongue planted firmly in cheek, TINY Version 0.1.

LEXICAL SCANNING
Of course, you know what's next:  We have to convert  the program so that  it can deal with multi-character 
keywords, newlines, and whitespace.   We have just gone through all  that  in  Part  VII. We'll use the distributed 
scanner  technique that I showed you in that  installment.    The  actual  implementation  is   a  little different 
because the way I'm handling newlines is different.

To begin with, let's simply  allow for whitespace.  This involves only adding calls to SkipWhite at the end of the 
three routines, GetName, GetNum, and Match.    A call to SkipWhite in Init primes the pump in case there are 
leading spaces. **See below:

Next, we need to deal with  newlines.   This is really a two-step process,  since  the  treatment  of  the  newlines 
with  single-character tokens is different from that for multi-character ones. We can eliminate some work by 
doing both  steps  at  once,  but I feel safer taking things one step at a time.

Insert the new procedure:**

**Add to Prototypes:
  void NewLine(void);

void NewLine() /* Skip Over an End-of-Line */
{
    while(strchr("\n\r", Look))
    {   _GetChar();
        if(Look == '\n')
        {   _GetChar();
        }
        SkipWhite();
    }
}
/*-------------------------------*/

Note that  we  have  seen  this  procedure  before in the form of Procedure Fin.  I've changed the name since 
this  new  one  seems more descriptive of the actual function.  I've  also  changed the code  to  allow  for 
multiple newlines and lines with nothing but white space.

The next step is to insert calls to NewLine wherever we  decide a newline is permissible.  As I've pointed out 
before, this  can be very different in different languages.   In TINY, I've decided to allow them virtually anywhere. 
This means that we need  calls to NewLine at the BEGINNING (not the end, as with SkipWhite)  of the 
procedures GetName, GetNum, and Match.

int GetNum()
{   int Value;

    NewLine(); <----
    SkipWhite(); <----
    Value = 0;
    ...
    [snip]...



char GetName()
{   char Name;

    NewLine(); <-----
    SkipWhite(); <-----
    if(! isalpha(Look))
    ...
    [snip]...
    ...
    SkipWhite(); <-----
    return Name;
}
/*-------------------------------*/

void Match(char x)
{   char string[6];

    NewLine(); <-----
    if(Look != x)
    {    strcpy(string, "\" \"");
    ...
    [snip]...
/*-------------------------------*/

For procedures that have while loops, such as TopDecl, we  need a call  to NewLine at the beginning of the 
procedure  AND  at  the bottom  of  each  loop.  That way, we can be assured that NewLine has just been 
called at the beginning of each  pass  through  the loop.**

void TopDecls()
{   char a_string[25];

    NewLine(); <-----
    while(Look != 'b')
    ...
    [snip]...
                break;
        }
        NewLine(); <-----
    }
}
/*-------------------------------*/

void Block()
{
    while(! strchr("el", Look))
    {   NewLine(); <-----
    ...
    [snip]...
              break;
        }
        NewLine(); <-----
        SkipWhite(); <-----
    }
}
/*-------------------------------*/



If you've got all this done, try the program out and  verify that it will indeed handle white space and newlines.
**Try: pvx,y,zb <cr> ix=0 x=1e <cr> x=y=z <cr> iz>0 z=z-1 lx=2ee.

If it does, then we're  ready to deal with multi-character tokens and keywords.   To begin, add the additional 
declarations (copied almost verbatim from Part VII):**

/* - Constants - */
#define BEEP    7
#define NKW     9
#define NKW1   10

/* - Global Variables - */
  char Look;            /* look ahead character */
   int LCount; 
  char Token; /* Current Token */
  char Value[20]; /* String Token of Look */
  char ST[26];

/* Define Keywords and Token Types */
  static char *KWlist[] = { "IF","ELSE","ENDIF", "WHILE", 
            "ENDWHILE", "VAR", "BEGIN", "END", "PROGRAM" };

  static char KWcode[NKW1] = 
          { 'x','i','l','e','w','e','v','b','e','p' };

Next, add the three procedures, also from Part VII:**

**Add to Prototypes:
  int Lookup(char *,int); void Scan(void);
  void MatchString(char *);   

int Lookup(char *s, int n) /* Table Lookup */
{   int i, found=0;

    i = n;
    while((i >= 0) && (found == 0))
    {   if(strcmp(s, KWlist[i]) == 0)
        {   found = 1;
        }
        else
        {   i--;
        }
    }
    i++;
    return i;  /* If the input string matches a table entry, 

     return the entry index.  If not, return a zero.*/
}
/*-------------------------------*/

void Scan() /*  Get an Identifier and Scan it for Keywords */
{   int k;

    GetName();
    k = Lookup(Value, NKW);



    Token = KWcode[k];
}
/*-------------------------------*/

void MatchString(char *string) /* Match a Specific Input String */
{   char a_string[20];

    if(strcmp(Value, string) != 0)
    {    strcpy(a_string, "\"");
         strcat(a_string, string);
         strcat(a_string, "\"");
         Expected(a_string);
    }
}
/*-------------------------------*/

Now, we have to make a  fairly  large number of subtle changes to the remaining procedures.  First,  we  must 
change  the function GetName ** again as we did in Part VII:**

**Change Prototypes to:
void GetName()

void GetName() /* Get an Identifier */
{   int ndx=0;

    NewLine();
    SkipWhite();
    if(! isalpha(Look))
    {   Expected("Name");
    }
    Value[0] = '\0';
    while((isalnum(Look)) && (ndx < 18))
    {   Value[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Value[ndx] = '\0';
    SkipWhite();
}
/*-------------------------------*/

Note that this procedure leaves its result in  the  global string Value.

Next, we have to change every reference to GetName to reflect its new form. These occur in Factor, 
Assignment, and Decl:

void Factor() /* Parse and Translate a Math Factor */
{   char Name;
    int Num;

    if(Look == '(')
    {   Match('(');
        BoolExpression();
        Match(')');
    }



    else if(isalpha(Look))
    {   GetName();
        LoadVar(Value[0]);
    }
    else
    {   Num = GetNum();
        LoadConst(Num);
    }
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{   char Name;

    Name = Value[0];
    Match('=');
    BoolExpression();
    Store(Name);
}
/*-------------------------------*/

void Decl() /* Process a Data Declaration */
{
    GetName();
    Alloc(Value[0]);
    while(Look == ',')
    {   Match(',');
        GetName();
        Alloc(Value[0]);
    }
}
/*-------------------------------*/

(Note that we're still  only  allowing  single-character variable names,  so we take the easy way out here and 
simply use the first character of the string.)

Finally, we must make the changes to use Token instead of Look as the  test  character  and to call Scan at 
the appropriate places. Mostly, this  involves  deleting  calls  to  Match,  occasionally replacing calls to  Match 
by calls to MatchString, and replacing calls  to  NewLine  by  calls  to  Scan.    Here are the affected 
routines:**

void DoIf() /* Recognize and Translate an IF Construct */
{   char L1[7], L2[7];

    BoolExpression();
    strcpy(L1, NewLabel());
    strcpy(L2, L1);
    BranchFalse(L1);
    Block();
    if(Token == 'l')
    {   strcpy(L2, NewLabel());
        Branch(L2);
        PostLabel(L1);
        Block();
    }
    PostLabel(L2);



    MatchString("ENDIF");
}
/*-------------------------------*/

void DoWhile() /* Parse and Translate a WHILE Statement */
{   char L1[7], L2[7];

    strcpy(L1, NewLabel());
    strcpy(L2, NewLabel());
    PostLabel(L1);
    BoolExpression();
    BranchFalse(L2);
    Block();
    MatchString("ENDWHILE");
    Branch(L1);
    PostLabel(L2);
}
/*-------------------------------*/

void Block() /* Parse and Translate a Block of Statements */
{
    Scan();
    while(! strchr("el", Token))
    {   switch(Token)
        {  case 'i':
              DoIf();
              break;
           case 'w':
              DoWhile();
              break;
           default:
              Assignment();
              Fin();
              break;
        }
        Scan();
    }
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{   char a_string[25];

    Scan();
    while(Token != 'b')
    {   switch(Token)
        {   case 'v':
                Decl();
                break;
            case '\n':
                Fin();
                break;
            default:
                strcpy(a_string, "Unrecognized Keyword ");
                strcat(a_string, Value);
                _Abort(a_string);



                break;
        }
        Scan();
    }
}
/*-------------------------------*/

void _Main() /* Parse and Translate a Main Program */
{
    MatchString("BEGIN");
    Prolog();
    Block();
    MatchString("END");
    Epilog();
}
/*-------------------------------*/

void Prog() /* Parse and Translate A Program */
{
    MatchString("PROGRAM");
    Header();
    TopDecls();
    _Main();
    Match('.');
}
/*-------------------------------*/

void Init() /* Initialize */
{   int i;

    LCount = 0;
    for(i=0; i<26; i++)
    {   ST[i] = '\0';
    }
    _GetChar();
    Scan();
}
/*-------------------------------*/

That should do  it.    If  all  the changes got in correctly, you should now be parsing programs that look like 
programs.   (If you didn't  make  it  through all the  changes,  don't  despair.    A complete listing of the final form 
is given later.)
**Try: program var a begin end.

program var x,y,z begin <cr>
if x#0 y=1 else z=2 endif end.

program var x=1, y=2, z=3 begin <cr> 
while x<100 <cr> x=z*(y-1) <cr> 
endwhile end.

Did it work?  If so, then we're just about home.  In fact, with a few minor  exceptions we've already got a 
compiler that's usable. There are still a few areas that need improvement.



MULTI-CHARACTER VARIABLE NAMES
One of those is  the  restriction  that  we still have, requiring single-character variable names.    Now that we can 
handle multi-character keywords, this one  begins  to  look  very much like an arbitrary  and  unnecessary 
limitation.    And  indeed   it  is. Basically, its only virtue is  that it permits a trivially simple implementation  of  the 
symbol   table.    But  that's  just  a convenience to the compiler writers, and needs to be eliminated.

We've done this step before.  This time, as usual, I'm doing it a little differently.  I think  the approach used here 
keeps things just about as simple as possible.

The natural  way  to  implement  a  symbol  table in Pascal is by declaring a record type, and making the symbol 
table an  array of such records.  Here, though, we don't really need  a  type  field yet  (there is only one kind of 
entry allowed so far), so we only need an array of symbols.  This has the advantage that we can use the existing 
procedure Lookup to  search the symbol table as well as the  keyword  list.    As it turns out, even when we need 
more fields we can still use the same approach, simply by  storing the other fields in separate arrays.

OK, here are the changes that  need  to  be made.  First, add the new typed constant:**

#define MaxEntry 100
  int NEntry = 0;

Then change the definition of the symbol table as follows:

  char ST[MaxEntry][10];
  char SType[MaxEntry];

(Note that ST is _NOT_ declared as a SymTab.  That declaration is a phony one to get Lookup to work.  A 
SymTab  would  take  up too much RAM space, and so one is never actually allocated.)

Next, we need to replace InTable:**

int InTable() /* Look for Symbol in Table */
{   int rval=0;

    if(Lookup('S', MaxEntry) != 0)
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

We also need a new procedure, AddEntry, that adds a new  entry to the table:

**Add to Prototypes:
  void AddEntry(char); void StoreA(void);

void AddEntry(char T) /* Add a New Entry to Symbol Table */
{   char a_string[20];

    if(InTable())
    {   strcpy(a_string, "Duplicate Identifier ");
        strcat(a_string, Value);
        _Abort(a_string);
    }
    if(NEntry == MaxEntry)



    {   _Abort("Symbol Table Full");
    }
    strcpy(ST[NEntry], Value);
    SType[NEntry] = T;
    NEntry++;
}
/*-------------------------------*/

This procedure is called by Alloc:**

void Alloc() /*  Allocate Storage for a Variable */
{   int Num;
    char a_string[30];

    if(InTable())
    {   strcpy(a_string, "Duplicate Variable Name ");
        strcat(a_string, Value);
        _Abort(a_string);
    }
    AddEntry('v');
    printf("%s\tDW  ", Value);
    if(Look == '=')
    {   Match('=');
        if(Look == '-')
        {   printf("%c", Look);
            Match('-');
        }
        Num = GetNum();
        printf("%d\n", Num);
    }
    else
    {   printf("0\n");
    }
}
/*-------------------------------*/

Finally, we must change all the routines that currently treat the variable name as a single character.  These 
include   LoadVar and Store (just change the  type  from  char  to string), and Factor, Assignment, and Decl (just 
change Value[1] to Value).**
**Change the Prototypes to match the following functions:

void Scan() /*  Get an Identifier and Scan it for Keywords */
{   int k;

    GetName();
    k = Lookup('K', NKW);
    Token = KWcode[k];
}
/*-------------------------------*/

int Lookup(char List, int Num) /* Table Lookup */
{   int i, found=0;

    i = Num;
    if(List == 'K')
    {   while((i >= 0) && (found == 0))



        {   if(strcmp(Value, KWlist[i]) == 0)
            {   found = 1;
            }
            else
            {   i--;
            }
        }
    }
    else
    {   while((i >= 0) && (found == 0))
        {   if(strcmp(Value, ST[i]) == 0)
            {   found = 1;
            }
            else
            {   i--;
            }
        }
    }
    i++;
    return i;  /* If the input string matches a table entry, 

     return the entry index.  If not, return a zero.*/
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{   int Num;

    if(Look == '(')
    {   Match('(');
        BoolExpression();
        Match(')');
    }
    else if(isalpha(Look))
    {   GetName();
        LoadVar();
    }
    else
    {   Num = GetNum();
        LoadConst(Num);
    }
}
/*-------------------------------*/

void Undefined() /* Report an Undefined Identifier */
{   char a_string[35];

    strcpy(a_string, "Undefined Identifier ");
    strcat(a_string, Value);
    _Abort(a_string);
}
/*-------------------------------*/

void StoreA() /* Load Address of Primary Variable */
{   char a_string[25];

    if(! InTable())
    {   Undefined();
    }



    strcpy(a_string, "lea  di, ");
    strcat(a_string, Value);
    EmitLn(a_string);
}
/*-------------------------------*/

void Store() /* Store Primary to Variable */
{   char a_string[25];

    if(! InTable())
    {   Undefined();
    }
    EmitLn("mov  [di], ax");
}
/*-------------------------------*/

void LoadVar() /* Load a Variable to Primary Register */
{   char a_string[20];

    if(! InTable())
    {   Undefined();
    }
    strcpy(a_string, "mov  ax, ");
    strcat(a_string, Value);
    EmitLn(a_string);
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{
    Match('=');
    StoreA();
    BoolExpression();
    Store();
}
/*-------------------------------*/

int InTable() /* Look for Symbol in Table */
{   int rval=0;

    if(Lookup('S', MaxEntry) != 0)
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

void Alloc() /*  Allocate Storage for a Variable */
{   int Num;
    char a_string[30];

    if(InTable())
    {   strcpy(a_string, "Duplicate Variable Name ");
        strcat(a_string, Value);
        _Abort(a_string);
    }
    AddEntry('v');
    printf("%s\tDW  ", Value);



    if(Look == '=')
    {   Match('=');
        if(Look == '-')
        {   printf("%c", Look);
            Match('-');
        }
        Num = GetNum();
        printf("%d\n", Num);
    }
    else
    {   printf("0\n");
    }
}
/*-------------------------------*/

void Decl() /* Process a Data Declaration */
{
    GetName();
    Alloc();
    while(Look == ',')
    {   Match(',');
        GetName();
        Alloc();
    }
}
/*-------------------------------*/

One  last  thing:  change  procedure  Init to clear the array  as shown:

void Init() /* Initialize */
{   int i;

    LCount = 0;
    for(i=0; i<MaxEntry; i++)
    {   ST[i][0] = '\0';
        SType[i] = '\0';
    }
    _GetChar();
    Scan();
}
/*-------------------------------*/

That should do it.  Try it out and verify  that  you can, indeed, use multi-character variable names.

MORE RELOPS
We still have one remaining single-character restriction: the one on relops.  Some of the relops are indeed single 
characters, but others  require two.  These are '<=' and '>='.  I also prefer the Pascal '<>' for "not equals," 
instead of '#'.

If you'll recall, in Part VII I pointed out that the conventional way  to  deal  with  relops  is  to  include them in the 
list  of keywords, and let the  lexical  scanner  find  them.  But, again, this requires scanning throughout the 
expression parsing process, whereas so far we've been able to limit the use of the scanner to the beginning of a 
statement.



I mentioned then that we can still get away with this,  since the multi-character relops are so few  and so limited 
in their usage. It's easy to just treat them as special cases and handle  them in an ad hoc manner.

The changes required affect only the code generation routines and procedures Relation and friends.   First, 
we're going to need two more code generation routines:**

**Add to Prototypes:
  void SetLessOrEqual(void);   void SetGreaterOrEqual(void);
  void LessOrEqual(void);

void SetLessOrEqual() /* Set AX If Compare was <= */
{
    EmitLn("pop  bx");
    EmitLn("xchg ax, bx");
    EmitLn("cmp  ax, bx");
    EmitLn("pushf");
    EmitLn("pop  ax");
    EmitLn("mov  ah, 0");
    EmitLn("and  al, 0C3H");
    EmitLn("sub  al, 2");
    EmitLn("neg  ax");
    EmitLn("mov  al, ah");
}
/*-------------------------------*/

void SetGreaterOrEqual() /* Set AX If Compare was >= */
{
    EmitLn("pushf");
    EmitLn("pop  ax");
    EmitLn("mov  ah, 0");
    EmitLn("and  al, 0C3H");
    EmitLn("sub  al, 2");
    EmitLn("neg  ax");
    EmitLn("mov  al, ah");
}
/*-------------------------------*/

void LessOrEqual() /*Recognize and Translate a Relational */
{ /* "Less Than or Equal"*/
   Match('=');
   Expression();
   SetLessOrEqual();
}
/*-------------------------------*/

Then, modify the relation parsing routines as shown below:**

void NotEquals() /*Recognize and Translate a Relational "Not Equals"*/
{
    Match('>');
    Expression();
    PopCompare();
    SetNEqual();
}



/*-------------------------------*/

void Less() /* Recognize and Translate a Relational "Less Than" */
{
    Match('<');
    switch(Look)
    {   case '=':
           LessOrEqual();
           break;
        case '>':
           NotEquals();
           break;
        default:
           Expression();
           SetLess();
           break;
    }
}
/*-------------------------------*/

void Greater() /*Recognize and Translate a Relational "Greater Than"*/
{
    Match('>');
    if(Look == '=')
    {   Match('=');
        Expression();
        PopCompare();
        SetGreaterOrEqual();
    }
    else
    {   Expression();
        PopCompare();
        SetGreater();
    }
}
/*-------------------------------*/

void Relation() /* Parse and Translate a Relation */
{
    Expression();
    if(IsRelop(Look))
    {   Push();
        switch(Look)
        {   case '=':
               Equals();
               break;
            case '<':
               Less();
               break;
            case '>':
               Greater();
               break;
            default:
               break;
        }
    }



}
/*-------------------------------*/

That's all it takes.  Now  you  can  process all the relops.  Try it.

INPUT/OUTPUT
We  now  have  a complete, working language, except for one minor embarassment: we have no way to get 
data in or out.  We need some I/O.

Now, the convention these days, established in C and continued in Ada and Modula 2, is to leave I/O statements 
out of  the language itself,  and  just  include them in the subroutine library.  That would  be  fine, except that so 
far  we  have  no  provision  for subroutines.  Anyhow, with this approach you run into the problem of variable-
length argument lists.  In Pascal, the I/O statements are built into the language because they are the  only  ones 
for which  the  argument  list can have a variable number of entries. In C, we settle for kludges like scanf and 
printf, and  must pass the argument count to the called procedure.  In Ada and  Modula 2 we must use the 
awkward  (and SLOW!) approach of a separate call for each argument.

So I think I prefer the  Pascal  approach of building the I/O in, even though we don't need to.

As  usual,  for  this we need some more code generation routines. These turn out  to be the easiest of all, 
because all we do is to call library procedures to do the work:**

**Add to Prototypes:
  void ReadVar(void); void WriteVar(void);
  void DoRead(void); void DoWrite(void);

void ReadVar() /* Read Variable to Primary Register */
{
    EmitLn("call  READ");
    Store();
}
/*-------------------------------*/

void WriteVar() /* Write Variable from Primary Register */
{
    EmitLn("call  WRITE");
}
/*-------------------------------*/

The idea is that READ loads the value from input  to  the D0, and WRITE outputs it from there.

These two procedures represent  our  first  encounter with a need for library procedures ... the components of a 
Run  Time Library (RTL).    Of  course, someone (namely  us)  has  to  write  these routines, but they're not  part 
of the compiler itself.  I won't even bother  showing the routines here, since these are obviously very much OS-
dependent.   I  _WILL_  simply  say that for SK*DOS, they  are  particularly  simple ... almost trivial.  One reason 
I won't show them here is that  you  can add all kinds of fanciness to the things, for  example  by prompting in 
READ for the inputs, and by giving the user a chance to reenter a bad input.

But that is really separate from compiler design, so for now I'll just assume that a library call TINYLIB.LIB exists.  
Since we now need  it  loaded,  we need to add a statement to  include  it  in procedure Header:**[snip]
That takes care of that part.  Now, we also need to recognize the read  and  write  commands.  We can do this 
by  adding  two  more keywords to our list:**



/* Definition of Keywords and Token Types */

#define NKW 11
#define NKW1 12

  static char *KWlist[] = { "IF","ELSE","ENDIF", "WHILE", "ENDWHILE",
                  "READ", "WRITE", "VAR", "BEGIN", "END", "PROGRAM" };

  static char KWcode[NKW1] = { 'x','i','l','e','w',
'e','R','W','v','b','e','p' };

(Note how I'm using upper case codes here to avoid  conflict with the 'w' of WHILE.)

Next, we need procedures for processing the  read/write statement and its argument list:

void DoRead() /* Process a Read Statement */
{
    Match('(');
    GetName();
    ReadVar();
    while(Look == ',')
    {   Match(',');
        GetName();
        ReadVar();
    }
    Match(')');
}
/*-------------------------------*/

void DoWrite() /* Process a Write Statement */
{
    Match('(');
    Expression();
    WriteVar();
    while(Look == ',')
    {   Match(',');
        Expression();
        WriteVar();
    }
    Match(')');
}
/*-------------------------------*/

Finally,  we  must  expand  procedure  Block  to  handle the  new statement types:

void Block() /* Parse and Translate a Block of Statements */
{
    Scan();
    while(! strchr("el", Token))
    {   switch(Token)
        {  case 'i':
              DoIf();
              break;



           case 'w':
              DoWhile();
              break;
           case 'R':
              DoRead();
              break;
           case 'W':
              DoWrite();
              break;
           default:
              Assignment();
              Fin();
              break;
        }
        Scan();
    }
}
/*-------------------------------*/

**Try: program var x,y,z begin <cr> read(x,y,z) end.
program var x,y,z begin <cr> write(x,y,z end.

That's all there is to it.  _NOW_ we have a language!

CONCLUSION
At this point we have TINY completely defined.  It's not much ... actually a toy  compiler.    TINY  has  only one 
data type and no subroutines  ... but it's a complete,  usable  language.    While you're not likely to be able to 
write another compiler in  it, or do anything else very seriously, you could write programs to read some input, 
perform calculations,  and  output  the results.  Not too bad for a toy.

Most importantly, we have a firm base upon which to build further extensions.  I know you'll be glad to hear this: 
this is the last time  I'll  start  over in building a parser ... from  now  on  I intend to just add features to  TINY 
until it becomes KISS.  Oh, there'll be other times we will  need  to try things out with new copies  of  the 
Cradle, but once we've found out how to do those things they'll be incorporated into TINY.

What  will  those  features  be?    Well,  for starters  we  need subroutines and functions.    Then  we  need to be 
able to handle different types, including arrays, strings, and other structures. Then we need to deal with the idea 
of pointers.  All this will be upcoming in future installments.

See you then.

For references purposes, the complete listing of TINY Version 1.0 is shown below:**

**See file: Tiny_v01.c

INTRODUCTION
I've got some  good news and some bad news.  The bad news is that this installment is  not  the  one  I 
promised last time.  What's more, the one after this one won't be, either.

The good news is the reason for this installment:  I've  found  a way  to simplify and improve the lexical 
scanning  part  of  the compiler.  Let me explain.

BACKGROUND
If  you'll remember, we talked at length  about  the  subject  of lexical  scanners in Part VII, and I left you with a 



design for a distributed scanner that I felt was about as simple  as  I  could make it ... more than most that I've 
seen  elsewhere.    We used that idea in Part X.  The compiler structure  that  resulted  was simple, and it got 
the job done.

Recently, though, I've begun  to  have  problems, and they're the kind that send a message that you might be 
doing something wrong.

The  whole thing came to a head when I tried to address the issue of  semicolons.  Several people have asked 
me  about  them,  and whether or not KISS will have them separating the statements.  My intention has been 
NOT to  use semicolons, simply because I don't like them and, as you can see, they have not proved necessary.

But I know that many of you, like me, have  gotten  used to them, and so  I  set  out  to write a short installment 
to show you how they could easily be added, if you were so inclined.

Well, it  turned  out  that  they weren't easy to add at all.  In fact it was darned difficult.

I guess I should have  realized that something was wrong, because of the issue  of  newlines.    In the last 
couple of installments we've addressed that issue,  and  I've shown you how to deal with newlines with a 
procedure called, appropriately enough, NewLine. In  TINY  Version  1.0,  I  sprinkled calls to this procedure  in 
strategic spots in the code.

It  seems  that  every time I've addressed the issue of newlines, though,  I've found it to be tricky,  and  the 
resulting  parser turned out to be quite fragile ... one addition or  deletion here or  there and things tended to go 
to pot.  Looking back on it,  I realize that  there  was  a  message  in  this that I just wasn't paying attention to.

When I tried to add semicolons  on  top of the newlines, that was the last straw.   I ended up with much too 
complex a solution.  I began to realize that something fundamental had to change.

So,  in  a  way this installment will cause us to backtrack a bit and revisit the issue of scanning all over again. 
Sorry  about that.  That's the price you pay for watching me  do  this in real time.  But the new version is 
definitely an improvement, and will serve us well for what is to come.

As  I said, the scanner we used in Part X was about as simple  as one can get.  But anything can be improved. 
The  new scanner is more like the classical  scanner,  and  not  as simple as before. But the overall  compiler 
structure is even simpler than before. It's also more robust, and easier to add  to  and/or  modify.   I think that's 
worth the time spent in this digression.  So in this installment, I'll be showing  you  the  new  structure.  No doubt 
you'll  be  happy  to  know  that, while the changes affect  many procedures, they aren't very profound  and so 
we lose very little of what's been done so far.

Ironically, the new scanner  is  much  more conventional than the old one, and is very much like the more 
generic scanner  I showed you  earlier  in  Part VII.  Then I started trying to get clever, and I almost clevered 
myself clean out of business.   You'd think one day I'd learn: K-I-S-S!

THE PROBLEM
The problem begins to show  itself in procedure Block, which I've reproduced below:**

void Block() /* Parse and Translate a Block of Statements */
{
    Scan();
    while(! strchr("el", Token))
    {   switch(Token)
        {  case 'i':
              DoIf();
              break;
           case 'w':
              DoWhile();
              break;
           case 'R':



              DoRead();
              break;
           case 'W':
              DoWrite();
              break;
           default:
              Assignment();
              Fin();
              break;
        }
        Scan();
    }
}
/*-------------------------------*/

As  you   can  see,  Block  is  oriented  to  individual  program statements.  At each pass through  the  loop, we 
know that we are at  the beginning of a statement.  We exit the block when we have scanned an END or an 
ELSE.

But suppose that we see a semicolon instead.   The  procedure  as it's shown above  can't  handle that, 
because procedure Scan only expects and can only accept tokens that begin with a letter.

I  tinkered  around for quite awhile to come up with a  fix.    I found many possible approaches, but none were 
very satisfying.  I finally figured out the reason.

Recall that when we started with our single-character parsers, we adopted a convention that the lookahead 
character would always be prefetched.    That   is,   we  would  have  the  character  that corresponds to our 
current  position in the input stream fetched into the global character Look, so that we could  examine  it  as 
many  times  as  needed.    The  rule  we  adopted was that EVERY recognizer, if it found its target token, would 
advance  Look to the next character in the input stream.

That simple and fixed convention served us very well when  we had single-character tokens, and it still does.  It 
would make  a lot of sense to apply the same rule to multi-character tokens.

But when we got into lexical scanning, I began  to  violate  that simple rule.  The scanner of Part X  did  indeed 
advance  to the next token if it found an identifier or keyword, but it DIDN'T do that if it found a carriage return, a 
whitespace character, or an operator.

Now, that sort of mixed-mode  operation gets us into deep trouble in procedure Block, because whether or not 
the  input  stream has been advanced depends upon the kind of token we  encounter.    If it's  a keyword or the 
target of  an  assignment  statement,  the "cursor," as defined by the contents of Look,  has  been advanced to 
the next token OR to the beginning of whitespace.  If, on the other  hand,  the  token  is  a  semicolon,  or if we 
have hit  a carriage return, the cursor has NOT advanced.

Needless to say, we can add enough logic  to  keep  us  on track. But it's tricky, and makes the whole parser 
very fragile.

There's a much  better  way,  and  that's just to adopt that same rule that's worked so well before, to apply to 
TOKENS as  well as single characters.  In other words, we'll prefetch tokens just as we've always done for 
characters.   It seems so obvious once you think about it that way.

Interestingly enough, if we do things this way  the  problem that we've had with newline characters goes away. 
We  can  just  lump them in as  whitespace  characters, which means that the handling of  newlines  becomes 
very trivial, and MUCH less prone to error than we've had to deal with in the past.

**Begin with file: Cradle11.c

**Note: the assembly code produced by Tiny can be assembled with the shareware  A86 Assembler to produce 



MS-DOS  '.com'  binary type executables.

THE SOLUTION
Let's  begin  to  fix  the  problem  by  re-introducing  the  two procedures:**

void GetName() /* Get an Identifier */
{   int ndx=0;

    SkipWhite();
    if(! isalpha(Look))
    {   Expected("Identifier");
    }
    Token = 'x';
    Value[0] = '\0';
    while((isalnum(Look)) && (ndx < 18))
    {   Value[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Value[ndx] = '\0';
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{   int ndx=0;

    SkipWhite();
    if(! isdigit(Look))
    {   Expected("Number");
    }
    Token = '#';
    Value[0] = '\0';
    while(isdigit(Look))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
}
/*-------------------------------*/

These two procedures are  functionally  almost  identical  to the ones  I  showed  you in Part VII.  They each 
fetch  the  current token, either an identifier or a number, into  the  global string Value.    They  also  set  the 
encoded  version, Token,  to  the appropriate code.  The input  stream is left with Look containing the first 
character NOT part of the token.

We  can do the same thing  for  operators,  even  multi-character operators, with a procedure such as:**
**Add to Prototypes:
  void GetOp(void); void Next(void);

void GetOp() /* Get an Operator */
{   int ndx=0;

    Token = Look;



    Value[0] = '\0';
    while((isalpha(Look)==0)&&(isdigit(Look)==0)&&(IsWhite(Look)==0))
    {   Value[ndx] = Look;
        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
}
/*-------------------------------*/

Note  that  GetOp  returns,  as  its  encoded  token,  the  FIRST character of the operator.  This is important,  
because  it means that we can now use that single character to  drive  the  parser, instead of the lookahead 
character.

We need to tie these  procedures together into a single procedure that can handle all three  cases.  The 
following  procedure will read any one of the token types and always leave the input stream advanced beyond 
it:**

void Next() /* Get the Next Input Token */
{
    SkipWhite();
    if(isalpha(Look))
    {   GetName();
    }
    else if(isdigit(Look))
    {   GetNum();
    }
    else
    {   GetOp();
    }
}
/*-------------------------------*/

***NOTE  that  here  I have put SkipWhite BEFORE the calls rather than after.  This means that, in general, the 
variable  Look will NOT have a meaningful value in it, and therefore  we  should  NOT use it as a test value for 
parsing, as we have been doing so far. That's the big departure from our normal approach.

Now, remember that before I was careful not to treat the carriage return (CR) and line  feed  (LF) characters as 
white space.  This was  because,  with  SkipWhite  called  as the last thing in  the scanner, the encounter with 
LF  would  trigger a read statement. If we were on the last line of the program,  we  couldn't get out until we 
input another line with a non-white  character.   That's why I needed the second procedure, NewLine, to handle 
the CRLF's.

But now, with the call  to SkipWhite coming first, that's exactly the behavior we want.    The  compiler  must 
know there's another token coming or it wouldn't be calling Next.  In other words,  it hasn't found the terminating 
END  yet.  So we're going to insist on more data until we find something.

All this means that we can greatly simplify both the  program and the concepts, by treating CR and LF as 
whitespace characters, and eliminating NewLine.  You  can  do  that  simply by modifying the function IsWhite:**

int IsWhite(char ch)
{   int test=0;

    if(strchr(" \t\n\r", ch))
    {   test = 1;
    }
    return test;



}
/*-------------------------------*/

We've already tried similar routines in Part VII,  but  you might as well try these new ones out.  Add them to a 
copy of the Cradle and call Next with the following main program:**

void main() /* Main Program */
{
    Init();
    while(Token != '.')
    {   Next();
        printf("%c  %s\n", Token, Value);
    }
}
/*-------------------------------*/

Compile  it and verify that you can separate  a  program  into  a series of tokens, and that you get the right 
encoding  for  each token.
**Example, try: program var x=10,y=20,z=30 begin end.

This ALMOST works,  but  not  quite.    There  are  two potential problems:    First,  in KISS/TINY almost all of 
our operators are single-character operators.  The only exceptions  are  the relops >=, <=, and <>.  It seems  a 
shame  to  treat  all  operators as strings and do a  string  compare,  when  only a single character compare  will 
almost  always  suffice.   Second, and  much  more important, the  thing  doesn't  WORK  when  two  operators 
appear together, as in (a+b)*(c+d).  Here the string following 'b' would be interpreted as a single operator ")*(."

It's possible to fix that problem.  For example,  we  could  just give GetOp a  list  of  legal  characters, and we 
could treat the parentheses as different operator types  than  the  others.   But this begins to get messy.

Fortunately, there's a  better  way that solves all the problems. Since almost  all the operators are single 
characters, let's just treat  them  that  way, and let GetOp get only one character at a time.  This not only 
simplifies GetOp, but also speeds  things up quite a  bit.    We  still have the problem of the relops, but we were 
treating them as special cases anyway.

So here's the final version of GetOp:**

void GetOp() /* Get an Operator */
{
    SkipWhite();
    Token = Look;
    Value[0] = Look;
    Value[1] = '\0';
    _GetChar();
}
/*-------------------------------*/

Note that I still give the string Value a value.  If you're truly concerned about efficiency, you could leave this out. 
When we're expecting an operator, we will only be testing  Token  anyhow, so the  value of the string won't 
matter.  But to me it seems to  be good practice to give the thing a value just in case.

Try  this  new  version with some realistic-looking  code.    You should  be  able  to  separate  any program into 
its  individual tokens, with the  caveat  that the two-character relops will scan into two separate tokens.  That's 
OK ... we'll  parse  them  that way.



Now, in Part VII the function of Next was combined with procedure Scan,  which  also  checked every identifier 
against  a  list  of keywords and encoded each one that was found.  As I  mentioned at the time, the last thing 
we would want  to  do  is  to use such a procedure in places where keywords  should not appear, such as in 
expressions.  If we  did  that, the keyword list would be scanned for every identifier appearing in the code.  Not 
good.

The  right  way  to  deal  with  that  is  to simply separate the functions  of  fetching  tokens and looking for 
keywords.    The version of Scan shown below  does NOTHING but check for keywords. Notice that it operates 
on the current token and does NOT advance the input stream.**

void Scan() /* Scan the Current Identifier for Keywords */
{   int k;

    if(Token == 'x')
    {   k = Lookup('K', NKW);
        Token = KWcode[k];
    }
}
/*-------------------------------*/

There is one last detail.  In the compiler there are a few places that we must  actually  check  the  string  value 
of  the token. Mainly, this  is done to distinguish between the different END's, but there are a couple  of  other 
places.    (I  should  note in passing that we could always  eliminate the need for matching END characters by 
encoding each one  to a different character.  Right now we are definitely taking the lazy man's route.)

The  following  version  of MatchString takes the  place  of  the character-oriented Match.  Note that, like Match, 
it DOES advance the input stream.**

void MatchString(char *string)  /* Match a Specific Input String */
{   char a_string[20];

    if(strcmp(Value, string) != 0)
    {    strcpy(a_string, "\"");
         strcat(a_string, string);
         strcat(a_string, "\"");
         Expected(a_string);
    }
    Next();
}
/*-------------------------------*/

FIXING UP THE COMPILER
Armed with these new scanner procedures, we can now begin  to fix the compiler to  use  them  properly.   The 
changes are all quite minor,  but  there  are quite a  few  places  where  changes  are necessary.  Rather than 
showing  you each place, I will give you the general idea and then just give the finished product.

First of all, the code for procedure Block doesn't change, though its function does:**

void Block() /* Parse and Translate a Block of Statements */
{
    Scan();
    while(! strchr("el", Token))
    {   switch(Token)
        {  case 'i':
              DoIf();



              break;
           case 'w':
              DoWhile();
              break;
           case 'R':
              DoRead();
              break;
           case 'W':
              DoWrite();
              break;
           default:
              Assignment();
              break;
        }
        Scan();
    }
}
/*-------------------------------*/

Remember that the new version of Scan doesn't  advance  the input stream, it only  scans  for  keywords.   The 
input stream must be advanced by each procedure that Block calls.

In general, we have to replace every test on Look with  a similar test on Token.  For example:**

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
    BoolTerm();
    while(IsOrop(Token))
    {   Push();
        switch(Look)
        {   case '|':
               BoolOr();
               break;
            case '~':
               BoolXor();
               break;
            default:
               break;
        }
    }
}
/*-------------------------------*/

In procedures like Add, we don't  have  to use Match anymore.  We need only call Next to advance the input 
stream:**

void Add() /* Recognize and Translate an Add */
{
    Next();
    Term();
    PopAdd();
}
/*-------------------------------*/

Control  structures  are  actually simpler.  We just call Next to advance over the control keywords:**



void DoIf() /* Recognize and Translate an IF Construct */
{   char L1[7], L2[7];

    Next();
    BoolExpression();
    strcpy(L1, NewLabel());
    strcpy(L2, L1);
    BranchFalse(L1);
    Block();
    if(Token == 'l')
    {   Next();
        strcpy(L2, NewLabel());
        Branch(L2);
        PostLabel(L1);
        Block();
    }
    PostLabel(L2);
    MatchString("ENDIF");
}
/*-------------------------------*/

That's about the extent of the REQUIRED changes.  In  the listing of TINY  Version  1.1  below,  I've  also  made 
a number of other "improvements" that  aren't really required.  Let me explain them briefly:

 (1)  I've deleted the two procedures Prog and _Main, and combined their functions into the main 
       program.  They didn't seem to add  to program clarity ... in fact  they  seemed  to  just muddy 
       things up a little.

 (2)  I've  deleted  the  keywords  PROGRAM  and  BEGIN  from the keyword list.  Each  one  only 
       occurs in one place, so it's not necessary to search for it.

 (3)  Having been  bitten  by  an  overdose  of  cleverness, I've reminded myself that TINY  is  
       supposed  to be a minimalist program.  Therefore I've  replaced  the  fancy  handling of unary 
       minus with the dumbest one I could think of.  A giant step backwards in code quality, but a  
       great simplification of the compiler.  KISS is the right place to use  the other  version.

 (4)  I've added some  error-checking routines such as CheckTable and CheckDup, and  replaced  
       in-line code by calls to them. This cleans up a number of routines.

 (5)  I've  taken  the  error  checking  out  of  code generation routines  like Store, and put it in  the  
       parser  where  it belongs.  See Assignment, for example.

 (6)  There was an error in InTable and Locate  that  caused them to search all locations  instead  of
       only those with valid data  in them.  They now search only  valid  cells.  This allows us to 
       eliminate  the  initialization  of  the symbol table, which was done in Init.

 (7)  Procedure AddEntry now has two  arguments,  which  helps to make things a bit more 
       modular.

 (8)  I've cleaned up the  code  for  the relational operators by the addition of the  new  procedures
       CompareExpression and NextExpression.

 (9)  I fixed an error in the Read routine ... the  earlier value did not check for a valid variable name.

CONCLUSION
The resulting compiler for  TINY  is given below.  Other than the removal  of  the  keyword PROGRAM, it parses 
the same language as before.    It's  just  a  bit cleaner, and more importantly  it's considerably more robust.  I 



feel good about it.

The next installment will be another  digression:  the discussion of  semicolons  and  such that got me into this 
mess in the first place.  THEN we'll press on  into  procedures and types.  Hang in there with me.  The addition 
of those features will go a long way towards removing KISS from  the  "toy  language" category.  We're getting 
very close to being able to write a serious compiler.**

TINY VERSION 1.1

/*--------------------------------------------------------------
program Tiny11;
--------------------------------------------------------------*/

**See file: Tiny_v1.1.c

INTRODUCTION
This installment is another one  of  those  excursions  into side alleys  that  don't  seem to fit  into  the 
mainstream  of  this tutorial  series.    As I mentioned last time, it was while I was writing this installment that I  
realized some changes  had  to be made  to  the  compiler structure.  So I had to digress from this digression 
long enough to develop the new structure  and  show it to you.

Now that that's behind us, I can tell you what I  set  out  to in the first place.  This shouldn't  take  long, and then 
we can get back into the mainstream.

Several people have asked  me  about  things that other languages provide, but so far I haven't addressed in 
this series.   The two biggies are semicolons and  comments.    Perhaps  you've wondered about them, too, and 
wondered  how things would change if we had to  deal with them.  Just so you can proceed with what's to come, 
without being  bothered by that nagging feeling that something is missing, we'll address such issues here.

SEMICOLONS
Ever since the introduction of Algol, semicolons have been a part of  almost every modern language.  We've all 
used  them  to  the point that they are taken for  granted.   Yet I suspect that more compilation errors have 
occurred  due  to  misplaced  or missing semicolons  than  any  other single cause.  And if we had a penny for 
every  extra  keystroke programmers have used  to  type  the little rascals, we could pay off the national debt.

Having  been  brought  up with FORTRAN, it took me a long time to get used to using semicolons, and to tell the 
truth  I've  never quite understood why they  were  necessary.    Since I program in Pascal, and since the use of 
semicolons in Pascal is particularly tricky,  that one little character is still  by  far  my  biggest source of errors.

When  I  began  developing  KISS,  I resolved to  question  EVERY construct in other languages, and to try to 
avoid the most common problems that occur with them.  That puts the semicolon very high on my hit list.

To  understand  the  role of the semicolon, you have to look at a little history.

Early programming languages were line-oriented.  In  FORTRAN, for example, various parts  of  the statement 
had specific columns or fields that they had to appear in.  Since  some  statements  were too  long for one line, 
the  "continuation  card"  mechanism  was provided to let  the  compiler  know  that a given card was still part of 
the previous  line.   The mechanism survives to this day, even though punched cards are now things of the 
distant past.

When  other  languages  came  along,  they  also  adopted various mechanisms for dealing with multiple-line 
statements.  BASIC is a good  example.  It's important to  recognize,  though,  that  the FORTRAN  mechanism 
was   not   so  much  required  by  the  line orientation of that  language,  as by the column-orientation.  In those 
versions of FORTRAN  where  free-form  input  is permitted, it's no longer needed.

When the fathers  of  Algol introduced that language, they wanted to get away  from  line-oriented programs like 



FORTRAN and BASIC, and allow for free-form input.   This included the possibility of stringing multiple 
statements on a single line, as in

     a=b; c=d; e=e+1;

In cases like this,  the  semicolon is almost REQUIRED.  The same line, without the semicolons, just looks 
"funny":

     a=b c= d e=e+1

I suspect that this is the major ... perhaps ONLY ...  reason for semicolons: to keep programs from looking 
funny.

But  the  idea  of stringing multiple statements  together  on  a single  line  is  a  dubious  one  at  best.  It's not 
very  good programming  style,  and  harks back to  the  days  when  it  was considered important to conserve 
cards.  In these  days  of CRT's and indented code, the clarity of programs is  far  better served by  keeping 
statements separate.  It's still  nice  to  have  the OPTION  of  multiple  statements,  but  it seems a shame to 
keep programmers  in  slavery  to the semicolon, just to keep that one rare case from "looking funny."

When I started in with KISS, I tried  to  keep  an  open mind.  I decided that I would use  semicolons when it 
became necessary for the parser, but not until then.  I figured this would happen just about  the time I added the 
ability  to  spread  statements  over multiple lines.  But, as you  can  see, that never happened.  The TINY 
compiler is perfectly  happy  to  parse the most complicated statement, spread over any number of lines, without 
semicolons.

Still, there are people  who  have  used  semicolons for so long, they feel naked  without them.  I'm one of them. 
Once I had KISS defined sufficiently well, I began to write a few sample programs in the language.    I 
discovered,  somewhat to my horror, that I kept  putting  semicolons  in anyway.   So  now  I'm  facing  the 
prospect of a NEW  rash  of  compiler  errors, caused by UNWANTED semicolons.  Phooey!

Perhaps more to the point, there are readers out  there  who  are designing their own languages, which may 
include  semicolons, or who  want to use the techniques of  these  tutorials  to  compile conventional languages 
like  C.    In  either case, we need to be able to deal with semicolons.

SYNTACTIC SUGAR
This whole discussion brings  up  the  issue of "syntactic sugar" ... constructs that are added to a language, not 
because they are needed, but because they help make the programs look right to the programmer.    After  all,  
it's nice  to  have  a  small,  simple compiler,    but  it  would  be  of  little  use if the resulting language  were 
cryptic  and hard to program.  The language FORTH comes  to mind (a premature OUCH! for the  barrage  I 
know  that one's going to fetch me).  If we can add features to the language that  make the programs easier to 
read  and  understand,  and  if those features  help keep the programmer from making errors, then we should do 
so.    Particularly if the constructs don't add much to the complexity of the language or its compiler.

The  semicolon  could  be considered an example,  but  there  are plenty of others, such as the 'THEN' in a IF-
statement,  the 'DO' in a WHILE-statement,  and  even the 'PROGRAM' statement, which I came within a gnat's 
eyelash of leaving out  of  TINY.    None of these tokens  add  much  to  the  syntax  of the language ... the 
compiler can figure out  what's  going on without them.  But some folks feel that they  DO  add to the readability 
of programs, and that can be very important.

There are two schools of thought on this subject, which  are well represented by two of our most popular 
languages, C and Pascal.

To  the minimalists, all such sugar should be  left  out.    They argue that it clutters up the language and adds to 
the  number of keystrokes  programmers  must type.   Perhaps  more  importantly, every extra token or keyword 
represents a trap laying in wait for the inattentive programmer.  If you leave out  a  token, misplace it, or misspell 



it, the compiler  will  get you.  So these people argue that the best approach is to get rid of such things.  These 
folks tend to like C, which has a minimum of unnecessary keywords and punctuation.

Those from the other school tend to like Pascal.  They argue that having to type a few extra characters is a 
small price to pay for legibility.    After  all, humans have to read the programs, too. Their best argument is that 
each such construct is an opportunity to tell the compiler that you really mean for it  to  do what you said to.  The 
sugary tokens serve as useful landmarks to help you find your way.

The differences are well represented by the two  languages.   The most oft-heard complaint about  C  is  that  it  
is too forgiving. When you make a mistake in C, the  erroneous  code  is  too often another  legal  C  construct. 
So  the  compiler  just  happily continues to compile, and  leaves  you  to  find the error during debug.    I guess 
that's why debuggers  are  so  popular  with  C programmers.

On the  other  hand,  if  a  Pascal  program compiles, you can be pretty  sure that the program will do what you 
told it.  If there is an error at run time, it's probably a design error.

The  best  example  of  useful  sugar  is  the semicolon  itself. Consider the code fragment:

     a=1+(2*b+c)   b...

Since there is no operator connecting the token 'b' with the rest of the  statement, the compiler will conclude that 
the expression ends  with  the  ')', and the 'b'  is  the  beginning  of  a  new statement.    But  suppose  I  have 
simply left out the  intended operator, and I really want to say:

     a=1+(2*b+c)*b...

In  this  case  the compiler will get an error, all right, but it won't be very meaningful  since  it will be expecting an 
'=' sign after the 'b' that really shouldn't be there.

If, on the other hand, I include a semicolon after the  'b', THEN there  can  be no doubt where I  intend  the 
statement  to  end. Syntactic  sugar,  then,  can  serve  a  very  useful purpose  by providing some additional 
insurance that we remain on track.

I find  myself  somewhere  in  the middle of all this.  I tend to favor the Pascal-ers' view ... I'd much rather find 
my  bugs  at compile time rather than run time.  But I also hate to just throw verbosity  in  for  no apparent 
reason, as in COBOL.  So far I've consistently left most of the Pascal sugar out of KISS/TINY.  But I certainly 
have no strong feelings either way, and  I  also  can see the value of sprinkling a little sugar around  just  for  the 
extra  insurance  that  it  brings.    If  you like  this  latter approach, things like that are easy to add.  Just 
remember that, like  the semicolon, each item of sugar  is  something  that  can potentially cause a compile error 
by its omission.

DEALING WITH SEMICOLONS
There  are  two  distinct  ways  in which semicolons are used  in popular  languages.    In Pascal, the semicolon 
is regarded as an statement SEPARATOR.  No semicolon  is  required  after  the last statement in a block.  The 
syntax is:

     <block> ::= <statement> ( ';' <statement>)*

     <statement> ::= <assignment> | <if> | <while> ... | null

(The null statement is IMPORTANT!)



Pascal  also defines some semicolons in  other  places,  such  as after the PROGRAM statement.

In  C  and  Ada, on the other hand, the semicolon is considered a statement TERMINATOR,  and  follows  all 
statements  (with  some embarrassing and confusing  exceptions).   The syntax for this is simply:

     <block> ::= ( <statement> ';')*

Of  the two syntaxes, the Pascal one seems on the face of it more rational, but experience has shown  that it 
leads to some strange difficulties.  People get  so  used  to  typing a semicolon after every  statement  that  they 
tend to  type  one  after  the  last statement in a block, also.  That usually doesn't cause  any harm ...  it  just 
gets treated as a  null  statement.    Many  Pascal programmers, including yours truly,  do  just  that. But there is 
one  place you absolutely CANNOT type  a  semicolon,  and  that's right before an ELSE.  This little gotcha  has 
cost  me  many an extra  compilation,  particularly  when  the  ELSE  is  added  to existing code.    So  the 
C/Ada  choice  turns out to be better. Apparently Nicklaus Wirth thinks so, too:  In his  Modula  2,  he abandoned 
the Pascal approach.

Given either of these two syntaxes, it's an easy matter (now that we've  reorganized  the  parser!) to add these 
features  to  our parser.  Let's take the last case first, since it's simpler.

To begin, I've made things easy by introducing a new recognizer:**

**Begin with file: Cradle12.c

**Add to Prototypes:
  void Semi(void);

void Semi() /* Match a Semicolon */
{
    MatchString(";");
}
/*-------------------------------*/

This procedure works very much like our old Match.  It insists on finding a semicolon as the next token.  Having 
found it, it skips to the next one.

Since a  semicolon follows a statement, procedure Block is almost the only one we need to change:**

void Block() /* Parse and Translate a Block of Statements */
{
    Scan();
    while(! strchr("el", Token))
    {   switch(Token)
        {  case 'i':
              DoIf();
              break;
           case 'w':
              DoWhile();
              break;
           case 'R':
              DoRead();
              break;
           case 'W':
              DoWrite();
              break;
           case 'x':



              Assignment();
              break;
           default:
              break;
        }
        Semi();
        Scan();
    }
}
/*-------------------------------*/

Note carefully the subtle change in the case statement.  The call to  Assignment  is now guarded by a test on 
Token.   This  is  to avoid calling Assignment when the  token  is  a  semicolon (which could happen if the 
statement is null).

Since declarations are also  statements,  we  also  need to add a call to Semi within procedure TopDecls:**

void TopDecls() /* Parse and Translate Global Declarations */
{
    Scan();
    while(Token == 'v')
    {   Alloc();
        while(Token == ',')
        {   Alloc();
        }
        Semi();
    }
}
/*-------------------------------*/

Finally, we need one for the PROGRAM statement:**

void main() /* Main Program */
{
    Init();
    MatchString("PROGRAM");
    Semi();
    Header();
    TopDecls();
    MatchString("BEGIN");
    Prolog();
    Block();
    MatchString("END");
    Epilog();
}
/*-------------------------------*/

It's as easy as that.  Try it with a copy of TINY and see how you like it.

**Compile and try: program; var x,y,z; begin x=y+z; end.

The Pascal version  is  a  little  trickier,  but  it  still only requires  minor  changes,  and those only to procedure 
Block.  To keep things as simple as possible, let's split the procedure into two parts.  The following procedure 
handles just one statement:**



**Add to Prototypes:
  void Statement(void);

void Statement() /* Parse and Translate a Single Statement */
{
    Scan();
    switch(Token)
    {  case 'i':
          DoIf();
          break;
       case 'w':
          DoWhile();
          break;
       case 'R':
          DoRead();
          break;
       case 'W':
          DoWrite();
          break;
       case 'x':
          Assignment();
          break;
       default:
          break;
    }
}
/*-------------------------------*/

Using this procedure, we can now rewrite Block like this:**

void Block() /* Parse and Translate a Block of Statements */
{
    Statement();
    while(Token == ';')
    {   Next();
        Statement();
    }
}
/*-------------------------------*/

That  sure  didn't  hurt, did it?  We can now parse semicolons in Pascal-like fashion.

**Try: program; var x,y,z; begin  <cr> 
if x=y x=z; else z=x; endif  <cr> 
end.

A COMPROMISE
Now that we know how to deal with semicolons, does that mean that I'm going to put them in KISS/TINY?  Well,  
yes and  no.    I like the extra sugar and the security that comes with knowing for sure where the  ends  of 
statements  are.    But I haven't changed my dislike for the compilation errors associated with semicolons.

So I have what I think is a nice compromise: Make them OPTIONAL!

Consider the following version of Semi:**



void Semi() /* Match a Semicolon */
{
    if(Token == ';')
    {   Next();
    }
}
/*-------------------------------*/

This procedure will ACCEPT a semicolon whenever it is called, but it won't INSIST on one.  That means that 
when  you  choose to use semicolons, the compiler  will  use the extra information to help keep itself on track. 
But if you omit one (or omit them all) the compiler won't complain.  The best of both worlds.

Put this procedure in place in the first version of  your program (the  one for C/Ada syntax), and you have  the 
makings  of  TINY Version 1.2.

COMMENTS
Up  until  now  I have carefully avoided the subject of comments. You would think that this would be an easy 
subject ... after all, the compiler doesn't have to deal with comments at all; it should just ignore them.  Well,  
sometimes that's true.

Comments can be just about as easy or as difficult as  you choose to make them.    At  one  extreme,  we can 
arrange things so that comments  are  intercepted  almost  the  instant  they  enter the compiler.  At the  other, 
we can treat them as lexical elements. Things  tend to get interesting when  you  consider  things  like comment 
delimiters contained in quoted strings.

SINGLE-CHARACTER DELIMITERS
Here's an example.  Suppose we assume the  Turbo  Pascal standard and use curly braces for comments.  In 
this case we  have single-character delimiters, so our parsing is a little easier.

One  approach  is  to  strip  the  comments  out the  instant  we encounter them in the input stream; that is, 
right  in procedure **_GetChar.    To  do  this,  first  change  the  name of **_GetChar to something else, say 
_GetCharX.  (For the record, this is  going to be a TEMPORARY change, so best not do this with your only copy 
of TINY.  I assume you understand that you should  always  do  these experiments with a working copy.)**

**Add to Prototypes:
  void _GetCharX(void); void SkipComment(void);

void _GetCharX() /* Read New Character From Input Stream */
{
    Look = getchar();
}
/*-------------------------------*/

Now, we're going to need a  procedure  to skip over comments.  So key in the following one:**

void SkipComment() /* Skip A Comment Field */
{
    while(Look != '}')
    {   _GetCharX();
    }
    _GetCharX();
}
/*-------------------------------*/



Clearly, what this procedure is going to do is to simply read and discard characters from the input  stream, until 
it finds a right curly brace.  Then it reads one more character and returns  it in Look.

Now we can  write  a  new  version of **_GetChar that SkipComment to strip out comments:**

void _GetChar() /* Get Character from Input Stream */
{ /* Skip Any Comments */
    _GetCharX();
    if(Look == '{')
    {   SkipComment();
    }
}
/*-------------------------------*/

Code this up  and  give  it  a  try.    You'll find that you can, indeed, bury comments anywhere you like.  The 
comments never even get into the parser proper ... every call to _GetChar just returns any character that's NOT 
part of a comment.

As a matter of fact, while  this  approach gets the job done, and may even be  perfectly  satisfactory  for  you, it  
does its job a little  TOO  well.    First  of all, most  programming  languages specify that a comment should be 
treated like a  space,  so  that comments aren't allowed  to  be embedded in, say, variable names. This current 
version doesn't care WHERE you put comments.

Second, since the  rest  of  the  parser can't even receive a '{' character, you will not be allowed to put one in a 
quoted string.

Before you turn up your nose at this simplistic solution, though, I should point out  that  as respected a compiler 
as Turbo Pascal also won't allow  a  '{' in a quoted string.  Try it.  And as for embedding a comment in an 
identifier, I can't imagine why anyone would want to do such a  thing,  anyway, so the question is moot. For 99% 
of all  applications,  what I've just shown you will work just fine.

But,  if  you  want  to  be  picky  about it  and  stick  to  the conventional treatment, then we  need  to  move  the 
interception point downstream a little further.

To  do  this,  first change _GetChar back to the way  it  was  and change the name called in SkipComment.  **

void _GetChar() /* Read New Character From Input Stream */
{
    Look = getchar();
}
/*-------------------------------*/

void SkipComment() /* Skip A Comment Field */
{
    while(Look != '}')
    {   _GetChar();
    }
    _GetChar();
}
/*-------------------------------*/

Then, let's add  the left brace as a possible whitespace character:**

int IsWhite(char ch)



{   int test=0;

    if(strchr(" \t\n\r{", ch))
    {   test = 1;
    }
    return test;
}
/*-------------------------------*/

Now, we can deal with comments in procedure SkipWhite:**

void SkipWhite() /* Skip Over Leading White Space */
{
    while(IsWhite(Look))
    {   if(Look == '{')
        {   SkipComment();
        }
        else
        {   _GetChar();
        }
    }
}
/*-------------------------------*/

Note  that SkipWhite is written so that we  will  skip  over  any combination of whitespace characters and 
comments, in one call.

OK, give this one a try, too.   You'll  find  that  it will let a comment serve to delimit tokens.  It's worth mentioning 
that this approach also gives us the  ability to handle curly braces within quoted strings, since within such 
strings we will not be testing for or skipping over whitespace.

There's one last  item  to  deal  with:  Nested  comments.   Some programmers like the idea  of  nesting 
comments, since it allows you to comment out code during debugging.  The  code  I've  given here won't allow 
that and, again, neither will Turbo Pascal.

But the fix is incredibly easy.  All  we  need  to  do is to make SkipComment recursive:**

void SkipComment() /* Skip A Comment Field */
{
    while(Look != '}')
    {   _GetChar();
        if(Look == '{')
        {   SkipComment();
        }
    }
    _GetChar();
}
/*-------------------------------*/

That does it.  As  sophisticated a comment-handler as you'll ever need.

MULTI-CHARACTER DELIMITERS
That's all well and  good  for cases where a comment is delimited by single  characters,  but  what  about  the 
cases such as C or standard Pascal, where two  characters  are  required?  Well, the principles are still the 



same, but we have to change our approach quite a bit.  I'm sure it won't surprise you to learn that things get 
harder in this case.

For the multi-character situation, the  easiest thing to do is to intercept the left delimiter  back  at the _GetChar 
stage.  We can "tokenize" it right there, replacing it by a single character.

Let's assume we're using the C delimiters '/*' and '*/'.   First, we  need  to  go back to the "_GetCharX' approach. 
In yet another copy of your compiler, rename  _GetChar to _GetCharX and then enter the following new 
procedure _GetChar:**

void _GetChar() /* Read New Character.  Intercept '/*' */
{
    if(TempChar != ' ')
    {   Look = TempChar;
        TempChar = ' ';
    }
    else
    {   _GetCharX();
        if(Look == '/')
        {   TempChar = getchar();
            if(TempChar == '*')
            {   Look = '{';
                TempChar = ' ';
            }
        }
    }
}
/*-------------------------------*/

As you can see, what this procedure does is  to  intercept  every occurrence of '/'.  It then examines the NEXT 
character  in  the stream.  If the character  is  a  '*',  then  we  have  found the beginning  of  a  comment,  and 
_GetChar  will  return  a  single character replacement for it.   (For  simplicity,  I'm  using the same '{' character 
as I did for Pascal.  If you were writing a C compiler, you'd no doubt want to pick some other character that's not 
used  elsewhere  in C.  Pick anything you like ... even $FF, anything that's unique.)

If the character  following  the  '/'  is NOT a '*', then _GetChar tucks it away in the new global TempChar, and 
returns  the  '/'.

Note that you need to declare this new variable and initialize it to ' '.  **

/* - Global Variables - */
  char TempChar = ' ';

Now we need a new version of SkipComment:**

void SkipComment() /* Skip A Comment Field */
{
    while(Look != '/')
    {   while(Look != '*')
        {   _GetCharX();
        }
        _GetCharX();
    }
    _GetChar();
}
/*-------------------------------*/



A  few  things  to  note:  first  of  all, function  IsWhite  and procedure SkipWhite  don't  need  to  be  changed, 
since _GetChar returns the '{' token.  If you change that token  character, then of  course you also need to 
change the  character  in  those  two routines.

Second, note that  SkipComment  doesn't call _GetChar in its loop, but  _GetCharX.    That  means   that  the 
trailing  '/'  is  not intercepted and  is seen by SkipComment.  Third, although _GetChar is the  procedure  doing 
the  work,  we  can still deal with the comment  characters  embedded  in  a  quoted  string,  by calling 
_GetCharX  instead  of  _GetChar  while  we're  within  the string. Finally,  note  that  we can again provide for 
nested comments by adding a single statement to SkipComment, just as we did before.

ONE-SIDED COMMENTS
So far I've shown you  how  to  deal  with  any  kind  of comment delimited on the left and the  right.   That only 
leaves the one-sided comments like those in assembler language or  in  Ada, that are terminated by the end of 
the line.  In a  way,  that  case is easier.   The only procedure that would need  to  be  changed  is 
SkipComment, which must now terminate at the newline characters:**

void SkipComment() /* Skip A Comment Field */
{
    while(Look != '\n')
    {   _GetCharX();
    }
    _GetChar();
}
/*-------------------------------*/

If the leading character is  a  single  one,  as  in  the  ';' of assembly language, then we're essentially done.  If  
it's  a two-character token, as in the '--'  of  Ada, we need only modify the tests  within  GetChar.   Either way, it's 
an easier problem than the balanced case.

CONCLUSION
At this point we now have the ability to deal with  both comments and semicolons, as well as other kinds of 
syntactic sugar.   I've shown  you several ways to deal with  each,  depending  upon  the convention  desired. 
The  only  issue left is: which of  these conventions should we use in KISS/TINY?

For the reasons that I've given as we went  along,  I'm  choosing the following:

 (1) Semicolons are TERMINATORS, not separators

 (2) Semicolons are OPTIONAL

 (3) Comments are delimited by curly braces

 (4) Comments MAY be nested

Put the code corresponding to these cases into your copy of TINY. You now have TINY Version 1.2.

Now that we  have  disposed  of  these  sideline  issues,  we can finally get back 
into the mainstream.  In  the  next installment, we'll talk  about procedures and 
parameter passing, and we'll add these important features to TINY.  See you then.

INTRODUCTION
At last we get to the good part!



At  this point we've studied almost all  the  basic  features  of compilers  and  parsing.    We  have  learned  how 
to  translate arithmetic expressions, Boolean expressions, control  constructs, data  declarations,  and  I/O 
statements.    We  have defined  a language, TINY 1.3, that embodies all these features, and we have written  a 
rudimentary  compiler that can translate  them.    By adding some file I/O we could indeed have a working 
compiler that could produce executable object files  from  programs  written in TINY.  With such a compiler, we 
could write simple  programs that could read integer data, perform calculations with it, and output the results.

That's nice, but what we have is still only a  toy  language.  We can't read or write even a single character of 
text, and we still don't have procedures.

It's  the  features  to  be  discussed  in  the  next  couple  of installments  that  separate  the men from the toys,  
so to speak. "Real" languages have more than one data type,  and  they support procedure calls.  More than 
any others, it's  these  two features that give a language much of its character and personality.  Once we  have 
provided   for   them,  our  languages,  TINY  and  its successors, will cease  to  become  toys  and  will  take 
on the character  of  real  languages,  suitable for serious programming jobs.

For several installments now, I've been promising you sessions on these  two  important  subjects.  Each time, 
other issues came up that required me to  digress  and deal with them.  Finally, we've been able to put all those 
issues to rest and can get on with the mainstream  of  things.    In   this   installment,   I'll  cover procedures. 
Next time, we'll talk about the basic data types.

ONE LAST DIGRESSION
This has  been an extraordinarily difficult installment for me to write.  The reason has nothing to do with the 
subject  itself ... I've  known  what I wanted to say for some time, and  in  fact  I presented  most  of  this at 
Software Development  '89,  back  in February.  It has more to do with the approach.  Let me explain.

When I first  began  this  series,  I  told you that we would use several "tricks" to  make  things  easy,  and to let 
us learn the concepts without getting too bogged down in the  details.   Among these tricks was the idea of 
looking at individual  pieces  of  a compiler at  a time, i.e. performing experiments using the Cradle as a base. 
When we studied expressions, for  example,  we  dealt with only that part of compiler theory.  When we  studied 
control structures,  we wrote a different program,  still  based  on  the Cradle, to do that part. We only 
incorporated these concepts into a complete language fairly recently. These techniques have served us very 
well indeed, and led us to the development of  a compiler for TINY version 1.3.
 
When  I  first  began this session, I tried to build upon what we had already done, and  just  add the new 
features to the existing compiler.  That turned out to be a little awkward and  tricky ... much too much to suit me.

I finally figured out why.  In this series of experiments,  I had abandoned the very useful techniques that had 
allowed  us  to get here, and  without  meaning  to  I  had  switched over into a new method of  working, that 
involved incremental changes to the full TINY compiler.

You  need  to  understand that what we are doing here is a little unique.  There have been a number of articles, 
such as  the Small C articles by Cain and Hendrix, that presented finished compilers for one language or 
another.  This is different.  In  this series of tutorials, you are  watching  me  design  and implement both a 
language and a compiler, in real time.

In the experiments that I've been doing in  preparation  for this article,  I  was  trying to inject  the  changes  into 
the  TINY compiler  in such a way that, at every step, we still had a real, working  compiler.     In   other  words, 
I  was  attempting  an incremental enhancement of the language and  its  compiler, while at the same time 
explaining to you what I was doing.

That's a tough act to pull off!  I finally  realized  that it was dumb to try.    Having  gotten  this  far using the idea 
of small experiments   based   on   single-character  tokens  and  simple, special-purpose  programs,  I  had 
abandoned  them  in  favor of working with the full compiler.  It wasn't working.

So we're going to go back to our  roots,  so  to  speak.  In this installment and the next, I'll be  using  single-
character tokens again as we study the concepts of procedures,  unfettered  by the other baggage  that we have 



accumulated in the previous sessions. As a  matter  of  fact,  I won't even attempt, at the end of this session, to 
merge the constructs into the TINY  compiler.   We'll save that for later.

After all this time, you don't need more buildup  than  that,  so let's waste no more time and dive right in.

THE BASICS
All modern  CPU's provide direct support for procedure calls, and the  **x86 is no exception.  For the **x86, the 
call  is  a  **CALL, and the return is **RET.  All we have to do is to arrange for  the  compiler to issue these 
commands at the proper place.

Actually, there are really THREE things we have to address.   One of  them  is  the  call/return  mechanism. 
The second  is  the mechanism  for  DEFINING  the procedure in the first place.  And, finally, there is the issue 
of passing parameters  to  the called procedure.  None of these things are really  very  difficult, and we can of 
course borrow heavily on what people have done in other languages ... there's no need to reinvent the wheel 
here.  Of the three issues, that of parameter passing will occupy  most  of our attention, simply because there 
are so many options available.

A BASIS FOR EXPERIMENTS
As always, we will need some software to  serve  as  a  basis for what  we are doing.  We don't need the full 
TINY compiler, but we do need enough of a program so that some of the  other constructs are present. 
Specifically, we need at least to be able to handle statements of some sort, and data declarations.

The program shown below is that basis.  It's a vestigial  form of TINY, with single-character tokens.   It  has 
data declarations, but only in their simplest form ... no lists or initializers.  It has assignment statements, but only 
of the kind

     <ident> = <ident>

In  other  words,  the only legal expression is a single variable name.    There  are no control  constructs  ...  the 
only  legal statement is the assignment.

Most of the program  is  just the standard Cradle routines.  I've shown the whole thing here, just to make sure 
we're  all starting from the same point:**

Begin with file: Cradle13.c

Note  that we DO have a symbol table, and there is logic to check a variable name to make sure it's a legal one. 
It's also worth noting that I  have  included  the  code  you've  seen  before to provide for white space  and 
newlines.    **

Once you've copied  the  program  **, the first step is to compile it and make sure it  works.   Give it a few 
declarations, and then a begin-block.  Try something like:

     va             (for VAR A)
     vb             (for VAR B)
     vc             (for VAR C)
     b              (for BEGIN)
     a=b
     b=c
     e.             (for END.)

As usual, you should also make some deliberate errors, and verify that the program catches them correctly.



DECLARING A PROCEDURE
If you're satisfied that our little program works, then it's time to  deal  with  the  procedures.  Since we haven't 
talked  about parameters yet, we'll begin by considering  only  procedures that have no parameter lists.

As a start, let's consider a simple program with a procedure, and think about the code we'd like to see generated 
for it:

     PROGRAM FOO;
     .
     .
     PROCEDURE BAR;                     BAR:
     BEGIN                                   .
     .                                       .
     .                                       .
     END;                                    RET

     BEGIN { MAIN PROGRAM }             MAIN:
     .                                       .
     .                                       .
     FOO;                                    CALL BAR
     .                                       .
     .                                       .
     END.                                    END MAIN

Here I've shown  the  high-order language constructs on the left, and the desired assembler code on the right. 
The first  thing to notice  is that we certainly don't have  much  code  to  generate here!  For  the  great  bulk  of 
both the procedure and the main program,  our existing constructs take care of  the  code  to  be generated.

The key to dealing with the body of the procedure is to recognize that  although a procedure may be quite  long, 
declaring  it  is really no different than  declaring  a  variable.   It's just one more kind of declaration.  We can 
write the BNF:

     <declaration> = <data decl> | <procedure>

This means that it should be easy to modify TopDecl to  deal with procedures.  What about the syntax of a 
procedure?   Well, here's a suggested syntax, which is essentially that of Pascal:

     <procedure> = PROCEDURE <ident> <begin-block>

There is practically no code generation required, other than that generated within the begin-block.    We need 
only emit a label at the beginning of the procedure, and an RET at the end.

Here's the required code:**

**Add to Prototypes:
  void DoProc(void); void xReturn(void);
  void DoMain(void); void Prolog(void);
  void Epilog(void); void Header(void);

void DoProc() /* Parse and Translate a Procedure Declaration */
{   char Name;

    Match('p');



    Name = GetName();
    Fin();
    if(InTable(Name))
    {   Duplicate(Name);
    }
    ndx = GetNdx(Name);
    ST[ndx] = 'p';
    PostLabel(Name);
    BeginBlock();
    xReturn();
}
/*-------------------------------*/

Note that I've added a new code generation routine, xReturn, which merely emits an RET instruction.  The 
creation of that routine is "left as an exercise for the student."**

void xReturn()     /* Store an RET */
{
    EmitLn("ret");
}
/*-------------------------------*/

To  finish  this  version, add the following line within the Case statement in DoBlock:**

void DoBlock() /* Parse and Translate a Block of Statements */
{
    SkipWhite();
    while(Look != 'e')
    {   switch(Look)
        {   case 'p':
               DoProc();
               break;
            default:
               Assignment();
               break;
        }
        Fin();
        SkipWhite();
    }
}
/*-------------------------------*/

I should mention that  this  structure  for declarations, and the BNF that drives it, differs from standard Pascal. 
In  the Jensen & Wirth  definition of Pascal, variable declarations, in fact ALL kinds of declarations,  must 
appear in a specific sequence, i.e. labels,   constants,  types,  variables,  procedures,  and   main program.  To 
follow  such  a  scheme, we should separate the two declarations, and have code in the main program 
something like

     DoVars;
     DoProcs;
     DoMain;

However,  most implementations of Pascal, including Turbo,  don't require  that  order  and  let  you  freely  mix 
up  the  various declarations,  as  long  as  you  still  don't  try to  refer  to something  before  it's  declared. 
Although  it  may  be  more aesthetically pleasing to declare all the global variables at the top of the  program,  it 



certainly  doesn't do any HARM to allow them to be sprinkled around.   In  fact,  it may do some GOOD, in the 
sense  that it gives you the  opportunity  to  do  a  little rudimentary  information  hiding.     Variables  that 
should  be accessed only by the main program, for example,  can  be declared just before it and will thus be 
inaccessible by the procedures.

OK, try this new version out.  Note that we  can  declare as many procedures as we choose (as long  as  we 
don't run out of single-character names!), and the  labels  and RET's all come out in the right places.
**Try: vavbvcb <cr> pdba=be <cr> pebb=ce <cr> c=ae.

It's  worth  noting  here  that  I  do  _NOT_  allow  for  nested procedures.   In TINY, all procedures must  be 
declared  at  the global level,  the  same  as  in  C.    There  has  been  quite a discussion about this point in  the 
Computer  Language  Forum of CompuServe.  It turns out that there is a significant  penalty in complexity that 
must be paid for the luxury of nested procedures. What's  more,  this  penalty gets paid at RUN TIME, because 
extra code must be added and executed every time a procedure is called. I also happen to believe that nesting 
is not a good  idea, simply on the grounds that I have seen too many abuses of the feature. Before going on to 
the next step, it's also worth noting that the "main program" as it stands  is incomplete, since it doesn't have the 
label and END statement.  Let's fix that little oversight:**

void DoMain() /* Parse and Translate a Main Program */
{
    Match('b');
    Fin();
    Prolog();
    DoBlock();
    Epilog();
}
/*-------------------------------*/

void main() /* Main Program */
{
    Init();
    TopDecls();
    DoMain();
}
/*-------------------------------*/

Note  that  DoProc  and DoMain are not quite symmetrical.  DoProc uses a call to BeginBlock, whereas DoMain 
cannot.  That's because a procedure  is signaled by the keyword PROCEDURE (abbreviated by a 'p' here), 
while the main program gets no  keyword  other  than the BEGIN itself.

And _THAT_ brings up an interesting question: WHY?

If  we  look  at the structure of C programs, we  find  that  all functions are treated just  alike,  except  that the 
main program happens to be identified by its name, "main."  Since  C functions can appear in any order, the 
main program can also be anywhere in the compilation unit.

In Pascal, on the other hand, all variables  and  procedures must be declared before they're  used,  which 
means  that there is no point putting anything after the  main program ... it could never be accessed.  The "main 
program" is not identified at  all, other than  being that part of the code that  comes  after  the  global BEGIN.  In 
other words, if it ain't anything else, it must be the main program.

This  causes  no  small  amount   of   confusion   for  beginning programmers, and for big Pascal programs 
sometimes it's difficult to  find the beginning of the main program at all.  This leads to conventions such as 
identifying it in comments:



     BEGIN { of MAIN }

This  has  always  seemed  to  me to be a bit of a kludge.    The question comes up:    Why  should  the main 
program be treated so much  differently  than  a  procedure?   In fact, now that  we've recognized that 
procedure declarations are just that ... part of the global declarations ... isn't  the main program just one more 
declaration, also?

The answer is yes, and by  treating  it that way, we can simplify the code and make  it  considerably  more 
orthogonal.  I propose that  we  use  an explicit keyword, PROGRAM, to identify the main program (Note that 
this  means  that we can't start the file with it, as in Pascal).  In this case, our BNF becomes:

     <declaration> = <data decl> | <procedure> | <main program>

     <procedure> = PROCEDURE <ident> <begin-block>

     <main program> = PROGRAM <ident> <begin-block>

The code  also  looks  much  better,  at  least in the sense that DoMain and DoProc look more alike:**

void DoMain() /* Parse and Translate a Main Program */
{   char Name;

    Match('P');
    Name = GetName();
    Fin();
    if(InTable(Name))
    {   Duplicate(Name);
    }
    Prolog();
    BeginBlock();
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{   char a_string[25];

    while(Look != '.')
    {   switch(Look)
        {   case 'v':
               Decl();
               break;
            case 'p':
               DoProc();
               break;
            case 'P':
               DoMain();
               break;
            default:
               strcpy(a_string, "Unrecognized Keyword  ");
               a_string[21] = Look;
               _Abort(a_string);
               break;
        }



        Fin();
    }
}
/*-------------------------------*/

void main() /* Main Program */
{
    Init();
    Header();
    TopDecls();
    Epilog();
}
/*-------------------------------*/

void Epilog() /* Write the Epilog */
{
    printf("\nDONE:\n");
    EmitLn("INT   20H");
    printf("START\tENDP\n");
}
/*-------------------------------*/

void Prolog() /* Write the Prolog */
{
    printf("START\tPROC\tNEAR\n");
    printf(";MAIN:..........................");
    printf("\n");
}
/*-------------------------------*/

void Header() /* Write Header Info */
{
    printf(";\t*************TINY Compiler*************\n");
    EmitLn("jmp   START");
}
/*-------------------------------*/

Since the declaration of the main program is now within  the loop of  TopDecl,  that  does  present  some 
difficulties.  How do  we ensure that it's  the last thing in the file?  And how do we ever exit  from  the  loop?  My 
answer for the second question, as you can see, was to bring back our old friend the  period.   Once the parser 
sees that, we're done.

To  answer  the first question:  it  depends  on  how  far  we're willing to go to  protect  the programmer from 
dumb mistakes.  In the code that I've shown,  there's nothing to keep the programmer from adding code after 
the  main  program  ... even another main program.   The code will just not be  accessible.    However,  we 
COULD access it via a FORWARD statement, which we'll be providing later. As a  matter  of fact, many 
assembler language programmers like to use  the  area  just  after the program to declare large, uninitialized 
data blocks, so there may indeed be  some  value in not  requiring the main program to be last.  We'll leave it as 
it is.

If we decide  that  we  should  give the programmer a little more help than that, it's pretty easy to add some logic 
to kick us out of the loop  once  the  main  program  has been processed.  Or we could  at least flag an error if 
someone  tries  to  include  two mains.



CALLING THE PROCEDURE
If you're satisfied that  things  are  working, let's address the second half of the equation ... the call.

Consider the BNF for a procedure call:

     <proc_call> = <identifier>

for an assignment statement, on the other hand, the BNF is:

     <assignment> = <identifier> '=' <expression>

At this point we seem to  have  a problem. The two BNF statements both begin on the  right-hand  side  with the 
token <identifier>. How are we supposed to know, when we see the  identifier, whether we have a procedure 
call or an assignment statement?   This looks like a case where our  parser ceases being predictive, and indeed 
that's exactly the case.  However, it turns  out  to  be  an easy problem to fix, since all we have to do is to look at 
the type of the identifier, as  recorded  in  the  symbol  table.    As we've discovered before, a  minor  local 
violation  of  the predictive parsing rule can be easily handled as a special case.

Here's how to do it:**

**Add to Prototypes:
  void AssignOrProc(void); void CallProc(char);

void Assignment(char Name) /* Parse and Translate an Assignment Statement */
{
    Match('=');
    StoreVarA(Name);
    Expression();
    StoreVarB();
}
/*-------------------------------*/

void AssignOrProc() /* Decide if a Statement is an Assignment */
{   char a_string[40]; /* or Procedure Call */
    char Name, type;

    Name = GetName();
    type = TypeOf(Name);
    switch(type)
    {   case ' ':
           Undefined(Name);
           break;
        case 'v':
           Assignment(Name);
           break;
        case 'p':
           CallProc(Name);
           break;
        default:
           strcpy(a_string, "Identifier ' ' Cannot Be Used Here");
           a_string[12] = Name;
           _Abort(a_string);



    }
}
/*-------------------------------*/

void DoBlock() /* Parse and Translate a Block of Statements */
{
    SkipWhite();
    while(Look != 'e')
    {   AssignOrProc();
        Fin();
        SkipWhite();
    }
}
/*-------------------------------*/

As you can see, procedure Block now calls AssignOrProc instead of Assignment.  The function of this new 
procedure is to simply read the identifier,  determine  its  type,  and  then  call whichever procedure  is 
appropriate  for  that  type.  Since the name  has already been read,  we  must  pass  it to the two procedures, 
and modify Assignment to match.   Procedure CallProc is a simple code generation routine:**

void CallProc(char Name) /* Call a Procedure */
{   char a_string[10];

    strcpy(a_string, "call   ");
    a_string[6] = Name;
    EmitLn(a_string);
}
/*-------------------------------*/

Well,  at  this  point  we  have  a  compiler  that can deal with procedures.    It's  worth  noting  that   procedures 
can  call procedures to any depth.  So even though we  don't  allow  nested DECLARATIONS, there  is certainly 
nothing to keep us from nesting CALLS, just as  we  would  expect  to  do in any language.  We're getting there, 
and it wasn't too hard, was it?

Of course, so far we can  only  deal with procedures that have no parameters.    The  procedures  can  only 
operate on  the  global variables  by  their  global names.  So at this point we have the equivalent of BASIC's 
GOSUB construct.  Not too bad ... after all lots of serious programs were written using GOSUBs, but we can do 
better, and we will.  That's the next step.

PASSING PARAMETERS
Again, we all know the basic idea of passed parameters, but let's review them just to be safe.

In general the procedure is given a parameter list, for example

     PROCEDURE FOO(X, Y, Z)

In  the declaration of a procedure,  the  parameters  are  called formal  parameters, and may be referred to in 
the  body  of  the procedure  by  those  names.    The  names  used for  the  formal parameters  are  really 
arbitrary.    Only  the  position really counts.  In  the  example  above,  the name 'X' simply means "the first 
parameter" wherever it is used.

When a procedure is called,  the "actual parameters" passed to it are associated  with  the  formal  parameters, 
on  a one-for-one basis.



The BNF for the syntax looks something like this:

     <procedure> = PROCEDURE <ident>
                    '(' <param-list> ')' <begin-block>

     <param_list> = <parameter> ( ',' <parameter> )* | null

Similarly, the procedure call looks like:

     <proc call> = <ident> '(' <param-list> ')'

Note that there is already an implicit decision  built  into this syntax.  Some languages, such as Pascal and Ada, 
permit parameter lists to be  optional.    If  there are no parameters, you simply leave off the parens  completely. 
Other  languages, like C and Modula 2, require the parens even if the list is empty.  Clearly, the example we just 
finished corresponds to the  former  point of view.  But to tell the truth I prefer the latter.  For procedures alone, 
the  decision would seem to favor the "listless" approach.
The statement

     Initialize; ,

standing alone, can only  mean  a procedure call.  In the parsers we've  been  writing,  we've  made  heavy  use 
of  parameterless procedures, and it would seem a  shame  to have to write an empty pair of parens for each 
case.

But later on we're going to  be  using functions, too.  And since functions  can  appear  in  the  same  places  as 
simple  scalar identifiers, you can't tell the  difference between the two.  You have to go  back  to  the 
declarations  to find out.  Some folks consider  this to be an advantage.  Their  argument  is  that  an identifier 
gets replaced by a value, and what do you care whether it's done by  substitution  or  by  a function?  But we 
sometimes _DO_ care, because the function may be quite time-consuming.  If, by  writing  a  simple identifier 
into a given expression, we can incur a heavy run-time penalty, it seems to  me  we  ought  to be made aware of 
it.

Anyway,  Niklaus  Wirth  designed both Pascal and Modula 2.  I'll give him the benefit of the doubt and assume 
that  he  had a good reason for changing the rules the second time around!

Needless to say, it's an easy thing to accomodate either point of view as we design a language, so this one is 
strictly a matter of personal preference.  Do it whichever way you like best.

Before we go any further, let's alter the translator to  handle a (possibly empty) parameter list.  For now we 
won't  generate any extra code ... just parse the syntax.  The  code  for  processing the declaration has very 
much  the  same  form we've seen before when dealing with VAR-lists:**

**Add to Prototypes:
  void FormalList(void); void FormalParam(void);
  void Param(void); void ParamList(void);
  void Call(char);

void FormalList() /*Process the Formal Parameter List of a Procedure*/
{
    Match('(');
    if(Look != ')')



    {   FormalParam();
        while(Look == ',')
        {   Match(',');
            FormalParam();
        }
    }
    Match(')');
}
/*-------------------------------*/

Procedure DoProc needs to have a line added to call FormalList:**

void DoProc() /* Parse and Translate a Procedure Declaration */
{   char Name;
    int ndx;

    Match('p');
    Name = GetName();
    FormalList();
    Fin();
    if(InTable(Name))
    {   Duplicate(Name);
    }
    ndx = GetNdx(Name);
    ST[ndx] = 'p';
    PostLabel(Name);
    BeginBlock();
    xReturn();
}
/*-------------------------------*/

For now, the code for FormalParam is just a dummy one that simply skips the parameter name:**

void FormalParam() /* Process a Formal Parameter */
{   char Name;

    Name = GetName();
}
/*-------------------------------*/

For  the actual procedure call, there must  be  similar  code  to process the actual parameter list:**

void Param() /* Process an Actual Parameter */
{   char Name;

    Name = GetName();
}
/*-------------------------------*/

void ParamList() /* Process the Parameter List for a Procedure  Call */
{
    Match('(');
    if(Look != ')')
    {   Param();



        while(Look == ',')
        {   Match(',');
            Param();
        }
    }
    Match(')');
}
/*-------------------------------*/

void CallProc(char Name) /* Process a Procedure Call */
{
    ParamList();
    Call(Name);
}
/*-------------------------------*/

void Call(char Name) /* Call a Procedure */
{   char a_string[10];

    strcpy(a_string, "call   ");
    a_string[6] = Name;
    EmitLn(a_string);
}
/*-------------------------------*/

Note  here  that  CallProc  is  no  longer  just  a  simple  code generation  routine.  It has some structure to  it.  
To  handle this, I've renamed the code  generation routine to just Call, and called it from within CallProc.

OK, if you'll add all this code to  your  translator  and  try it out, you'll find that you can indeed parse the syntax 
properly. I'll note in  passing  that  there  is _NO_ checking to make sure that  the  number  (and,  later,  types) 
of  formal  and  actual parameters match up.  In a production compiler, we must of course do  this.  We'll ignore 
the issue now if for no other reason than that the structure of our  symbol table doesn't currently give us a place 
to store the necessary information.  Later on, we'll have a place for that data and we can deal with the issue 
then.

THE SEMANTICS OF PARAMETERS
So  far we've dealt with the SYNTAX  of  parameter  passing,  and we've got the parsing mechanisms in place to 
handle it.  Next, we have to look at the SEMANTICS, i.e., the actions to be taken when we encounter 
parameters. This brings  us  square  up  against the issue of the different ways parameters can be passed.

There is more than one way to pass a parameter, and the way we do it can have a  profound  effect on the 
character of the language. So  this is another of those areas where I can't just give you my solution.  Rather, it's 
important that we spend some time looking at the  alternatives  so  that  you  can  go another route if you 
choose to.

There are two main ways parameters are passed:

     o By value
     o By reference (address)

The differences are best seen in the light of a little history.

The old FORTRAN compilers passed all parameters by reference.  In other  words, what was actually passed 
was  the  address  of  the parameter.  This meant  that  the  called  subroutine was free to either read or  write 



that  parameter,  as often as it chose to, just  as though it were a global variable.    This  was  actually quite an 
efficient  way  to  do  things, and it was pretty simple since  the  same  mechanism  was  used  in  all cases, 
with  one exception that I'll get to shortly.

There were problems, though.  Many people felt  that  this method created entirely too much coupling between 
the  called subroutine and  its  caller.    In  effect, it gave the subroutine  complete access to all variables that 
appeared in the parameter list.

Many  times,  we  didn't want to actually change a parameter, but only use it as an input.  For example, we 
might  pass an element count  to a subroutine, and wish we could  then  use  that  count within a DO-loop.    To 
avoid  changing the value in the calling program, we had to make a local copy of the input  parameter, and 
operate only on the  copy.    Some  FORTRAN programmers, in fact, made it a practice to copy ALL parameters 
except those  that were to be used as return values.    Needless to say, all this copying defeated  a  good  bit  of 
the  efficiency  associated with  the approach.

There was, however, an even more insidious problem, which was not really just the fault of  the "pass by 
reference" convention, but a bad convergence of several implementation decisions.

Suppose we have a subroutine:

     SUBROUTINE FOO(X, Y, N)

where N is some kind of  input  count  or flag.  Many times, we'd like  to be able to pass a literal or even an 
expression in place of a variable, such as:

     CALL FOO(A, B, J + 1)

Here the third  parameter  is  not  a  variable, and so it has no address.    The  earliest FORTRAN compilers did 
not  allow  such things, so we had to resort to subterfuges like:

     K = J + 1
     CALL FOO(A, B, K)

Here again, there was copying required, and the burden was on the programmer to do it.  Not good.

Later  FORTRAN  implementations  got  rid  of  this  by  allowing expressions  as  parameters.   What they  did 
was  to  assign  a compiler-generated variable, store the value of the expression in the variable, and then pass 
the address of the expression.

So far, so good.    Even if the subroutine mistakenly altered the anonymous variable, who was to know  or 
care?  On the next call, it would be recalculated anyway.

The  problem  arose  when  someone  decided to make  things  more efficient.  They  reasoned,  rightly enough, 
that the most common kind of "expression" was a single integer value, as in:

     CALL FOO(A, B, 4)

It seemed inefficient to go to the trouble of "computing" such an integer and storing it  in  a temporary variable, 
just to pass it through  the  calling  list.  Since we had to pass the address of the  thing  anyway,  it seemed to 
make lots of sense to just pass the address of the literal integer, 4 in the example above.

To make matters  more  interesting, most compilers, then and now, identify all literals and store  them 



separately  in  a "literal pool,"  so that we only have to store one  value  for each unique literal.    That 
combination  of  design  decisions:     passing expressions, optimization for literals as a special case, and use of 
a literal pool, is what led to disaster.

To  see  how  it works, imagine that we call subroutine FOO as in the example above, passing  it  a literal 4. 
Actually, what gets passed  is  the  address of the literal 4, which is stored in the literal pool.   This address 
corresponds to the formal parameter, K, in the subroutine itself.

Now suppose that, unbeknownst to the  programmer,  subroutine FOO actually modifies K to be, say, -7. 
Suddenly, that literal  4 in the literal pool  gets  CHANGED,  to  a  -7.  From then on, every expression that uses 
a  4  and  every subroutine that passes a 4 will be using the value of -7 instead!  Needless to say, this can lead 
to some  bizarre  and difficult-to-find behavior.  The whole thing gave  the concept of pass-by-reference a bad 
name, although as we have seen, it was really a combination of  design decisions that led to the problem.

In spite of  the  problem,  the  FORTRAN  approach  had  its good points.    Chief  among them is the fact that 
we  don't  have  to support  multiple  mechanisms.    The  same  scheme,  passing the address of  the 
argument, works for EVERY case, including arrays. So the size of the compiler can be reduced.

Partly because of the FORTRAN  gotcha, and partly just because of the reduced coupling involved, modern 
languages  like  C, Pascal, Ada, and Modula 2 generally pass scalars by value.

This means that the value of the scalar is COPIED into a separate value  used only for the call.  Since the value 
passed is a copy, the called procedure can use it as a local variable and modify it any way it likes.  The value in 
the caller will not be changed.

It may seem at first that  this  is a bit inefficient, because of the need to copy the parameter.  But remember that 
we're going to have  to  fetch SOME value to pass  anyway,  whether  it  be  the parameter  itself  or  an address 
for it.  Inside the subroutine, using  pass-by-value  is  definitely  more  efficient,  since  we eliminate one level of 
indirection.  Finally, we saw earlier that with  FORTRAN,  it  was often necessary to make copies within the 
subroutine anyway, so pass-by-value reduces the  number  of local variables.  All in all, pass-by-value is better.

Except for one small little detail:  if all parameters are passed by value, there is no way for a called to  procedure 
to return a result to its caller!  The parameter passed is NOT altered in the caller,  only  in  the called procedure. 
Clearly, that won't get the job done.

There  have  been   two   answers  to  this  problem,  which  are equivalent.   In Pascal, Wirth provides for VAR 
parameters, which are  passed-by-reference.    What a VAR parameter is, in fact, is none other than our old 
friend the FORTRAN parameter, with  a new name and paint job for disguise.  Wirth neatly  gets  around  the 
"changing a literal"  problem  as  well  as  the  "address  of an expression" problem, by  the  simple expedient of 
allowing only a variable to be the actual parameter.  In other  words,  it's  the same restriction that the earliest 
FORTRANs imposed.

C does the same thing, but explicitly.  In  C,  _ALL_  parameters are passed  by  value.    One  kind  of variable 
that C supports, however, is the pointer.  So  by  passing a pointer by value, you in effect pass what it points to 
by reference.  In some ways this works even better yet,  because  even  though  you can change the variable 
pointed to all you like, you  still  CAN'T  change  the pointer itself.  In a function such as strcpy, for example, 
where the  pointers are incremented as the string  is  copied,  we  are really only incrementing copies of the 
pointers, so the values of those  pointers in the calling procedure  still  remain  as  they were.  To modify a 
pointer,  you  must  pass  a  pointer  to the pointer.

Since we are simply  performing  experiments  here, we'll look at BOTH pass-by-value and pass-by-reference. 
That  way,  we'll be able to use either one as we need to.  It's worth mentioning that it's  going  to  be tough to 
use the C approach to pointers here, since a pointer is a different type and we haven't  studied types yet!

PASS-BY-VALUE
Let's just try some simple-minded  things and see where they lead us.    Let's begin with the pass-by-value 
case.    Consider  the procedure call:



     FOO(X, Y)

Almost the only reasonable way to pass the data  is  through  the CPU stack.  So the code we'd like  to  see 
generated  might look something like this:**

      PUSH  X
      PUSH  Y
      CALL   FOO

That certainly doesn't seem too complex!

When the CALL is executed, the CPU pushes the return  address onto the stack and jumps to FOO.    At  this 
point the stack will look like this:**

.

.
Value of X (2 bytes)
Value of Y (2 bytes)

SP --> Return Address (2 bytes)

So the values of  the  parameters  have  addresses that are fixed offsets from the stack pointer.  In this 
example,  the addresses are:**

X:  (SP)+4
Y:  (SP)+2

Now consider what the called procedure might look like:

     PROCEDURE FOO(A, B)
     BEGIN
          A = B
     END

(Remember, the names  of  the formal parameters are arbitrary ... only the positions count.)

The desired output code might look like:**

     FOO: MOV   SI,  SP
              MOV   AX,  [SI+2]
              MOV   [SI+4],  AX
              RET

Note that, in order to address the formal parameters, we're going to have to know  which  position they have in 
the parameter list. This means some changes to the symbol table stuff.  In  fact, for our single-character case 
it's best to just create  a  new symbol table for the formal parameters.

Let's begin by declaring a new table:**

int Params[26];



We  also  will  need to keep track of how many parameters a given procedure has:**

int NumParams;

**We also need a params flag, to signify when we are within a function.

int PFlag = 0;

And we need to initialize the new table.  Now, remember  that the formal parameter list  will  be different for each 
procedure that we process, so we'll need to initialize that table anew  for each procedure.  Here's the initializer:**

**Add to Prototypes:
  void ClearParams(void); int ParamNumber(char);    
   int IsParam(char); void AddParam(char);
  void LoadParam(int); void StoreParam(int);
  void Push(void);

void ClearParams() /* Initialize Parameter Table to Null */
{   int i;

    for(i=0; i<26; i++)
    {   Params[i] = 0;
    }
    NumParams = 0;
}
/*-------------------------------*/

We'll put a call to this procedure in Init, and  also  at the end of DoProc:**

void Init() /* Initialize */
{   int i;

    _GetChar();
    SkipWhite();
    for(i=0; i<26; i++)
    {   ST[i] = ' ';
    }
    ClearParams();
}
/*-------------------------------*/

void DoProc() /* Parse and Translate a Procedure Declaration */
{   char Name;
    int ndx;

    Match('p');
    Name = GetName();
    FormalList();
    Fin();
    if(InTable(Name))
    {   Duplicate(Name);
    }
    ndx = GetNdx(Name);
    ST[ndx] = 'p';



    PostLabel(Name);
    BeginBlock();
    xReturn();
    ClearParams();
}
/*-------------------------------*/

Note that the call  within  DoProc ensures that the table will be clear when we're in the main program.

OK, now  we  need  a  few procedures to work with the table.  The next few functions are  essentially  copies  of 
InTable, TypeOf, etc.:**

int ParamNumber(char Name) /* Find the Parameter Number */
{   int ParamNum, ndx;

    ndx = GetNdx(Name);
    ParamNum = Params[ndx];
    return ParamNum;
}
/*-------------------------------*/

int IsParam(char Name) /* See if an Identifier is a Parameter */
{   int rval=0, ndx;

    ndx = GetNdx(Name);
    if(Params[ndx] != 0)
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

void AddParam(char Name) /* Add a New Parameter to Table */
{   int ndx;

    if(IsParam(Name))
    {   Duplicate(Name);
    }
    NumParams++;
    ndx = GetNdx(Name);
    Params[ndx] = NumParams;
}
/*-------------------------------*/

Finally, we need some code generation routines:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{   int Offset;

    if(PFlag == 0)
    {   PFlag = 1;
        EmitLn("mov  si, sp");



    }
    Offset = 2 + 2 * (NumParams - N);
    Emit("mov  ax, [si+");
    printf("%d]\n", Offset);
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{   int Offset;

    if(PFlag == 0)
    {   PFlag = 1;
        EmitLn("mov  si, sp");
    }
    Offset = 2 + 2 * (NumParams - N);
    Emit("mov  [si+");
    printf("%d], ax\n", Offset);
}
/*-------------------------------*/

void Push() /* Push The Primary Register to the Stack */
{
    EmitLn("push  ax");
}
/*-------------------------------*/

( The last routine is one we've seen  before,  but  it  wasn't in this vestigial version of the program.)

With those preliminaries in place, we're ready to  deal  with the semantics of procedures with calling lists 
(remember, the code to deal with the syntax is already in place).

Let's begin by processing a formal parameter.  All we have  to do is to add each parameter to the parameter 
symbol table:**

void FormalParam() /* Process a Formal Parameter */
{   char Name;

    Name = GetName();
    AddParam(Name);
}
/*-------------------------------*/

Now, what about dealing with a formal parameter  when  it appears in the body of the procedure?  That takes a 
little more work.  We must first determine that it IS a formal parameter.  To  do this, I've written a modified 
version of TypeOf:**

char TypeOf(char Name) /* Get Type of Symbol */
{   char ch;
    int ndx;

    if(IsParam(Name))
    {   ch = 'f';
    }



    else
    {   ndx = GetNdx(Name);
        ch = ST[ndx];
    }
    return ch;
}
/*-------------------------------*/

We also must modify AssignOrProc to deal with this new type:**

void AssignOrProc() /* Decide if a Statement is an Assignment */
{   char a_string[40]; /* or Procedure Call */
    char Name, type;

    Name = GetName();
    type = TypeOf(Name);
    switch(type)
    {   case ' ':
           Undefined(Name);
           break;
        case 'v':
        case 'f':
           Assignment(Name);
           break;
        case 'p':
           CallProc(Name);
           break;
        default:
           strcpy(a_string, "Identifier ' ' Cannot Be Used Here");
           a_string[12] = Name;
           _Abort(a_string);
    }
}
/*-------------------------------*/

Finally,  the  code  to process an assignment  statement  and  an expression must be extended:**

void Expression() /* Parse and Translate an Expression */
{   char Name;
    int ParamNum;

    Name = GetName();
    if(IsParam(Name))
    {   ParamNum = ParamNumber(Name);
        LoadParam(ParamNum);
    }
    else
    {   LoadVar(Name);
    }
}
/*-------------------------------*/

void Assignment(char Name) /*Parse and Translate an */
{   int ParamNum; /*Assignment Statement */



    Match('=');
    Expression();
    if(IsParam(Name))
    {   ParamNum = ParamNumber(Name);
        StoreParam(ParamNum);
    }
    else
    {   StoreVarA(Name);
        StoreVarB();
    }
}
/*-------------------------------*/

As you can see, these procedures will treat  every  variable name encountered as either a  formal  parameter  or 
a global variable, depending  on  whether  or not it appears in the parameter symbol table.   Remember  that  we 
are  using  only a vestigial form of Expression.  In the  final  program,  the  change shown here will have to be 
added to Factor, not Expression.

The rest is easy.  We need only add the  semantics  to the actual procedure call, which we can do with one new 
line of code:**

void Param() /* Process an Actual Parameter */
{
    Expression();
    Push();
}
/*-------------------------------*/

void xReturn()     /* Store an RET */
{
    PFlag = 0;
    EmitLn("ret");
}
/*-------------------------------*/

That's  it.  Add these changes to your program and give it a try. Try declaring one or two procedures, each with 
a formal parameter list.  Then do some assignments, using combinations of global and formal  parameters. 
You  can  call one procedure  from  within another, but you cannot DECLARE a nested procedure.  You can 
even pass formal parameters from one procedure to another.  If  we had the  full  syntax  of the language here, 
you'd also be able to do things like read  or  write  formal  parameters  or  use  them in complicated expressions.

WHAT'S WRONG?
At this point, you might be thinking: Surely there's more to this than a few pushes and  pops.    There  must  be 
more  to passing parameters than this.

You'd  be  right.    As  a  matter  of fact, the code that  we're generating here leaves a lot to be desired in several 
respects.

The most glaring oversight is that it's wrong!   If  you'll  look back at the code for a procedure call, you'll see that 
the caller pushes each actual parameter onto the stack before  it  calls the procedure.  The  procedure  USES 
that information, but it doesn't change the stack  pointer.    That  means that the stuff is still there when we 
return. SOMEBODY needs to clean up  the  stack,  or we'll soon be in very hot water!



Fortunately,  that's  easily fixed.  All we  have  to  do  is  to increment the stack pointer when we're finished.

Should  we  do  that  in  the  calling  program,  or  the  called procedure?   Some folks let the called  procedure 
clean  up  the stack,  since  that  requires less code to be generated per call, and since the procedure, after  all, 
knows  how  many parameters it's got.   But  that  means  that  it must do something with the return address so 
as not to lose it.

I prefer letting  the  caller  clean  up, so that the callee need only execute a return.  Also, it seems a bit more 
balanced, since the caller is  the  one  who  "messed  up" the stack in the first place.  But  THAT  means  that 
the caller must remember how many items  it  pushed.    To  make  things  easy, I've  modified  the procedure 
ParamList to be a function  instead  of  a  procedure, returning the number of bytes pushed:**

**Change Prototypes to:
  int ParamList(void);

int ParamList() /* Process the Parameter List for a Procedure  Call */
{   int N=0, PList;

    Match('(');
    if(Look != ')')
    {   Param();
        N++;
        while(Look == ',')
        {   Match(',');
            Param();
            N++;
        }
    }
    Match(')');
    PList = 2 * N;
    return PList;
}
/*-------------------------------*/

Procedure CallProc then uses this to clean up the stack:**

void CallProc(char Name) /* Process a Procedure Call */
{   int Num;

    Num = ParamList();
    Call(Name);
    CleanStack(Num);
}
/*-------------------------------*/

Here I've created yet another code generation procedure:**

**Add to Prototypes:
  void CleanStack(int);

void CleanStack(int Num) /*Adjust Stack Pointer Upwards by N Bytes*/
{
    if(Num > 0)
    {   Emit("ADD  sp, ");



        printf("%d\n", Num);
    }
}
/*-------------------------------*/

OK, if you'll add this code to your compiler, I think you'll find that the stack is now under control.

The next problem has to do with our way of addressing relative to the stack pointer.  That works fine in our 
simple examples, since with our rudimentary  form  of expressions nobody else is messing with the stack.  But 
consider a different example as simple as:

     PROCEDURE FOO(A, B)
     BEGIN
          A = A + B
     END

The code generated by a simple-minded parser might be:**

     FOO: MOV  SI, SP
MOV  AX,  [SI+4] ; Fetch A
PUSH  AX ; Push it
MOV  AX,  [SI+ 2] ; Fetch B
POP  BX
ADD  AX,  BX ; Add A
MOV [SI+4], AX ; Store A
RET

**[snip]
Fixing the compiler to generate this code is a lot easier than it is  to  explain  it.    All we need to do is to modify 
the  code generation created by DoProc.  Since that makes the code a little more than one line, I've created new 
procedures to deal  with it, paralleling the Prolog and Epilog procedures called by DoMain:**

**Add to Prototypes:
  void ProcProlog(char);  void ProcEpilog(void);

void ProcProlog(char Name) /* Write the Prolog for a Procedure */
{
    PostLabel(Name);
    if(NumParams > 0)
    {   EmitLn("mov  si, sp");
    }
}
/*-------------------------------*/

void ProcEpilog() /* Write the Epilog for a Procedure */
{
    xReturn();
}
/*-------------------------------*/

Procedure DoProc now just calls these:**



void DoProc() /* Parse and Translate a Procedure Declaration */
{   char Name;
    int ndx;

    Match('p');
    Name = GetName();
    FormalList();
    Fin();
    if(InTable(Name))
    {   Duplicate(Name);
    }
    ndx = GetNdx(Name);
    ST[ndx] = 'p';
    ProcProlog(Name);
    BeginBlock();
    ProcEpilog();
    ClearParams();
}
/*-------------------------------*/

Finally, we need to  change  the  references  to SP in procedures LoadParam and StoreParam:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{   int Offset;

    Offset = 2 + 2 * (NumParams - N);
    Emit("mov  ax, [si+");
    printf("%d]\n", Offset);
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{   int Offset;

    Offset = 2 + 2 * (NumParams - N);
    Emit("mov  [si+");
    printf("%d], ax\n", Offset);
}
/*-------------------------------*/

That's all it takes.  Try this out and see how you like it.
**Try: vavbvc <cr> px(a,b,c) <cr> ba=b b=ce <cr> 

pz() <cr> bb=ce <cr> Pwbe.

At this point we  are  generating  some  relatively nice code for procedures and procedure calls.  Within the 
limitation that there are no local variables  (yet)  and  that  no procedure nesting is allowed, this code is just what 
we need.

There is still just one little small problem remaining:

     WE HAVE NO WAY TO RETURN RESULTS TO THE CALLER!



But  that,  of course, is not a  limitation  of  the  code  we're generating, but  one  inherent  in  the  call-by-value 
protocol. Notice that we CAN use formal parameters in any  way  inside  the procedure.  We  can  calculate 
new  values for them, use them as loop counters (if we had loops, that is!), etc.   So  the code is doing what it's 
supposed to.   To  get over this last problem, we need to look at the alternative protocol.

CALL-BY-REFERENCE
This  one is easy, now that we have  the  mechanisms  already  in place.    We  only  have  to  make  a few 
changes  to  the  code generation.  Instead of  pushing  a value onto the stack, we must push an address.  **

We'll be  making  a  new  version  of  the test program for this.
Before we do anything else,

>>>> MAKE A COPY <<<<

of  the program as it now stands, because  we'll  be  needing  it again later.

Let's begin by looking at the code we'd like to see generated for the new case. Using the same example as 
before, we need the call

     FOO(X, Y)

to be translated to:**

LEA  AX, X
PUSH AX ; Push the address of X
LEA  AX, Y
PUSH AX ; Push the address of Y
CALL FOO ; Call FOO

That's a simple matter of a slight change to Param:**

void Param() /* Process an Actual Parameter */
{   char Name, a_string[20];

    Name = GetName();
    strcpy(a_string, "lea  ax,  ");
    a_string[9] = Name;
    EmitLn(a_string);
    EmitLn("push  ax");
}
/*-------------------------------*/

(Note that with pass-by-reference, we can't  have  expressions in the calling list, so Param can just read the 
name directly.)

At the other end, the references to the formal parameters must be given one level of indirection:**

FOO: MOV  SI, SP
MOV  DI, [SI+4] ; Fetch the address of A
MOV  AX, [DI] ; Fetch A
PUSH  AX ; Push it
MOV  DI, [SI+2] ; Fetch the address of B



MOV  AX, [DI] ; Fetch B
POP  BX
ADD  AX, BX ; Add A
MOV  DI, [SI+4] ; Fetch the address of A
MOV  [DI], AX : Store A
RET

All  of  this  can  be   handled  by  changes  to  LoadParam  and StoreParam:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{   int Offset;

    Offset = 2 + 2 * (NumParams - N);
    Emit("mov  di, [si+");
    printf("%d]\n", Offset);
    Emit("mov  ax, [di]");
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{   int Offset;

    Offset = 2 + 2 * (NumParams - N);
    Emit("mov  di, [si+");
    printf("%d]\n", Offset);
    Emit("mov  [di], ax");
}
/*-------------------------------*/

**[snip]
That  should  do it.  Give it a try and see  if  it's  generating reasonable-looking code.  As  you  will  see,  the 
code is hardly optimal,  since  we  reload  the  address register every  time  a parameter  is  needed.    But 
that's  consistent  with our  KISS approach  here,  of  just being sure to generate code that works. We'll  just 
make  a  little  note here, that here's yet  another candidate for optimization, and press on.

Now we've learned to process parameters  using  pass-by-value and pass-by-reference.  In the real world, of 
course, we'd like to be able  to  deal  with BOTH methods.  We can't do that yet, though, because we have not 
yet had a session on types,  and  that has to come first.

If  we can only have ONE method, then of course it has to be  the good ol' FORTRAN method of  pass-by-
reference,  since  that's the only way procedures can ever return values to their caller.

This, in fact, will be one of the differences  between  TINY  and KISS.  In the next version of TINY,  we'll  use 
pass-by-reference for all parameters.  KISS will support both methods.

LOCAL VARIABLES
So  far,  we've  said  nothing  about  local  variables, and  our definition of procedures doesn't allow  for  them. 
Needless to say, that's a big gap in our language, and one  that  needs to be corrected.

Here again we are faced with a choice: Static or dynamic storage?

In those  old FORTRAN programs, local variables were given static storage just like global ones.  That is, each 
local  variable got a  name  and  allocated address, like any other variable, and was referenced by that name.



That's easy for us to do, using the allocation mechanisms already in place.  Remember,  though,  that local 
variables can have  the same  names as global ones.  We need to somehow deal with that by assigning unique 
names for these variables.

The characteristic of static storage, of course, is that the data survives  a procedure call and return.   When  the 
procedure  is called  again,  the  data will still be there.  That  can  be  an advantage in some applications.    In 
the FORTRAN days we used to do tricks like initialize a flag, so that you could tell when you were entering a 
procedure  for  the  first time and could do any one-time initialization that needed to be done.

Of  course,  the  same  "feature"  is also what  makes  recursion impossible with static storage.  Any new call to 
a procedure will overwrite the data already in the local variables.

The alternative is dynamic storage, in which storage is allocated on the stack just as for passed parameters. 
We  also  have the mechanisms  already  for  doing this.  In fact, the same routines that  deal with passed (by 
value) parameters  on  the  stack  can easily deal  with  local  variables  as  well  ... the code to be generated  is 
the  same.  
**The purpose of the offset in the **x86 [SI] register is there just for that reason:  we can use it to adjust the 
stack  pointer  to  make  room  for  locals.   Dynamic storage, of course, inherently supports recursion.

When  I  first  began  planning  TINY,  I  must  admit  to  being prejudiced in favor of static  storage.    That's 
simply because those old FORTRAN  programs  were pretty darned efficient ... the early FORTRAN compilers 
produced  a quality of code that's still rarely matched by modern compilers.   Even today, a given program 
written  in  FORTRAN  is likely to outperform  the  same  program written in C or Pascal, sometimes  by  wide 
margins. (Whew!  Am I going to hear about THAT statement!)

I've always supposed that the reason had to do with the  two main differences  between  FORTRAN 
implementations  and  the  others: static  storage  and  pass-by-reference.    I  know  that dynamic storage 
supports  recursion,  but it's always seemed to me a bit peculiar to be willing to accept slower code in the 95% 
of cases that don't need recursion, just to get that feature when you need it.  The idea is that, with static storage, 
you can  use absolute addressing  rather than indirect addressing, which should  result in faster code. 
More recently, though, several folks  have pointed out to me that there really is no performance  penalty 
associated  with dynamic storage.  

**[snip]...  most  operating systems require position independent code.  So  I'm  convinced,  now, that there is no 
good reason NOT to use dynamic storage.

Since this use of local variables fits so well into the scheme of pass-by-value  parameters,  we'll  use   that 
version   of  the translator to illustrate it. (I _SURE_ hope you kept a copy!)

The general idea is to keep track of how  many  local  parameters there  are.    Then we use the integer in the 
LINK instruction to adjust the stack pointer downward to make room for them.   Formal parameters are 
addressed  as  positive  offsets  from  the frame pointer, and locals as negative offsets.  With a  little  bit  of 
work, the same procedures we've  already created can take care of the whole thing.

Let's start by creating a new variable, Base:**

int Base;

We'll use this  variable,  instead of NumParams, to compute stack offsets.  That means changing  the two 
references to NumParams in LoadParam and StoreParam:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{   int Offset;

    Offset = 2 + 2 * (Base - N);
    Emit("mov  ax, [si");
    if(Offset > 0)



    {   printf("+");
    }
    printf("%d]\n", Offset);
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{   int Offset;

    Offset = 2 + 2 * (Base - N);
    Emit("mov  [si");
    if(Offset > 0)
    {   printf("+");
    }
    printf("%d], ax\n", Offset);
}
/*-------------------------------*/

The idea is that the value of Base will be  frozen  after we have processed the formal parameters, and  won't 
increase  further as the new, local variables, are inserted in the symbol table.  This is taken care of at the end of 
FormalList:**

void FormalList() /* Process Formal Parameter List of a Procedure */
{
    Match('(');
    if(Look != ')')
    {   FormalParam();
        while(Look == ',')
        {   Match(',');
            FormalParam();
        }
    }
    Match(')');
    Fin();
    Base = NumParams;
    NumParams = NumParams + 1;
}
/*-------------------------------*/

(We add **two words to make allowances for the return  address and old frame pointer, which end up between 
the formal parameters and the locals.)

About all we  need  to  do  next  is to install the semantics for declaring local variables into the parser.  The 
routines are very similar to Decl and TopDecls:**

**Add to Prototypes:
  void LocDecl(void); int LocDecls(void);

void LocDecl() /* Parse and Translate a Local Data Declaration */
{   char Name;

    Match('v');
    Name = GetName();
    AddParam(Name);



    Fin();
}
/*-------------------------------*/

int LocDecls() /* Parse and Translate Local Declarations */
{   int n=0;

    while(Look == 'v')
    {   LocDecl();
        n++;
    }
    return n;
}
/*-------------------------------*/

Note that LocDecls is a  FUNCTION, returning the number of locals to DoProc.

Next, we modify DoProc to use this information:**

void DoProc() /* Parse and Translate a Procedure Declaration */
{   char Name;
    int ndx, k;

    Match('p');
    Name = GetName();
    if(InTable(Name))
    {   Duplicate(Name);
    }
    ndx = GetNdx(Name);
    ST[ndx] = 'p';
    FormalList();
    k = LocDecls();
    ProcProlog(Name, k);
    BeginBlock();
    ProcEpilog(k);
    ClearParams();
}
/*-------------------------------*/

(I've  made   a  couple  of  changes  here  that  weren't  really necessary.  Aside from rearranging things a bit, I 
moved the call to  Fin  to  within FormalList, and placed one inside LocDecls as well.   Don't forget to put one at 
the end of FormalList, so that we're together here.)

Note the change in the call  to  ProcProlog.  The new argument is the number of WORDS (not bytes) to allocate 
space  for.    Here's the new version of ProcProlog:**

**Change Prototypes to:
  void ProcProlog(char,int);  void ProcEpilog(int);

void ProcProlog(char Name, int k) /*Write the Prolog for a Procedure*/
{   int push;

    PostLabel(Name);
    if(NumParams > 1)



    {   EmitLn("mov  si, sp");
        if(k > 0)
        {   push = k * 2;
            Emit("sub  sp, ");
            printf("%d\n", push);
        }
    }
}
/*-------------------------------*/

void ProcEpilog(int k) /* Write the Epilog for a Procedure */
{   int pop;

    if(k > 0)
    {   pop = k * 2;
        Emit("add  sp, ");
        printf("%d\n", pop);
    }
    xReturn();
}
/*-------------------------------*/

That should do it.  Add these changes and see how they work.

**Try: vavbvc <cr> px(a,b,c) <cr> ba=b b=ce <cr> 
Pwb <cr> x(a,b,c) <cr> e.

If that works okay, create a file, (name it "in.fil"),  containing this code:

vavbvc ;declare vars: A,B,C
px(a,b,c) ;declare X
vdvfvg ;declare local vars: D,F,G
ba=g b=f c=de ;begin <assignments> end
py() ;declare Y
vdvfvg ;declare local vars: D,F,G
ba=b d=g f=ce ;begin <assignments> end
pz() ;declare Z
ba=b b=ce ;begin <assignments> end
Pwb ;Main Program: begin
x(a,b,c) ;call X, with passed vars
y() z()e. ;call Y, call Z, end

then, enter: C:> Cradle13 < in.fil > out.asm

and examine the resulting assembly code in "out.asm".

CONCLUSION
At this point you know  how to compile procedure declarations and procedure calls,  with  parameters  passed 
by  reference  and by value.  You can also handle local variables.  As you can see, the hard part is not  in 
providing  the  mechanisms, but in deciding just which mechanisms to use.  Once we make these  decisions, the 
code to translate the constructs is really not that difficult. I didn't  show  you  how  to  deal  with the combination 
of local parameters   and  pass-by-reference  parameters,  but  that's   a straightforward extension to  what 
you've already seen.  It just gets a little more messy, that's all, since we  need  to  support both mechanisms 
instead of just one at a  time.    I'd  prefer to save  that  one  until after we've  dealt  with  ways  to  handle 



different variable types.

That will be the next installment, which will be coming soon to a Forum near you.  See you then.

INTRODUCTION
In the  last installment (Part XIII: PROCEDURES) I mentioned that in that part and this one,  we  would cover 
the two features that tend  to  separate  the toy language from a real, usable one.  We covered  procedure  calls 
in that installment.  Many of you have been  waiting patiently, since August '89, for  me  to  drop  the other shoe. 
Well, here it is.

In this installment, we'll talk  about how to deal with different data types.  As I did in the last segment, I will NOT 
incorporate these  features directly into the TINY  compiler  at  this  time. Instead, I'll be using the same 
approach that has worked  so well for  us  in the past: using only  fragments  of  the  parser  and single-
character  tokens.    As  usual,  this  allows  us to  get directly to the  heart  of  the  matter  without  having  to 
wade through a lot of  unnecessary  code.  Since the major problems in dealing with multiple types occur in  the 
arithmetic operations, that's where we'll concentrate our focus.

A  few words of warning:  First, there are some types that I will NOT  be  covering in this installment.   Here  we 
will  ONLY  be talking about the simple, predefined types.  We  won't  even deal with arrays, pointers or strings 
in  this  installment;  I'll be covering them in the next few.

Second, we also will not discuss user-defined types.    That will not come until  much  later,  for  the simple 
reason that I still haven't convinced myself  that  user-defined  types  belong  in a language named KISS.  In 
later installments, I do intend to cover at least the general  concepts  of  user-defined  types, records, etc., just 
so that the series  will  be complete.  But whether or not they will be included as part of KISS is still an open 
issue. I am open to comments or suggestions on this question.

Finally,  I  should  warn you: what we are about to  do  CAN  add considerable  extra  complication  to  both  the 
parser  and the generated  code.    Handling  variables  of  different  types  is straightforward enough.  The 
complexity  comes  in  when  you add rules about conversion between types.  In general,  you  can make the 
compiler  as  simple or as complex as you choose to make it, depending upon the  way  you  define  the  type-
conversion rules. Even if you decide not to allow ANY type conversions (as  in Ada, for example) the problem is 
still there, and is  built  into  the mathematics.  When  you  multiply two short numbers, for example, you can get 
a long result.

I've approached this problem very  carefully,  in  an  attempt to Keep It Simple.  But we can't avoid the 
complexity entirely.   As has so often has happened, we end up having to trade code quality against complexity, 
and  as  usual  I  will  tend to opt for the simplest approach.

WHAT'S COMING NEXT?
Before diving into the tutorial, I think you'd like to know where we are going  from  here  ...  especially since it's 
been so long since the last installment.

I have not been idle in  the  meantime.   What I've been doing is reorganizing  the  compiler  itself into Turbo 
Units.  One of the problems I've encountered is that  as we've covered new areas and thereby added features to 
the  TINY  compiler, it's been getting longer and longer.  I realized a couple of installments back that this was 
causing trouble, and that's why I've gone back  to using only compiler fragments for  the  last  installment and 
this one. The problem is that it just  seems  dumb to have to reproduce the code  for,  say,  processing  boolean 
exclusive  OR's,  when the subject of the discussion is parameter passing.

The obvious way  to have our cake and eat it, too, is to break up the compiler into separately compilable 
modules,  and  of course the Turbo Unit is an ideal  vehicle  for doing this.  
**(remember, this is a translation of Turbo Pascal into C, I'll just use C headers, functions and #include 
statements).  
This allows us to hide some fairly complex code (such as the  full arithmetic and boolean expression parsing) 
into a single unit, and just pull it in whenever it's needed.  In that way, the only code I'll have to reproduce in 
these installments will be the code that actually relates to the issue under discussion.



I've  also  been  toying with Turbo 5.5, which of course includes the Borland object-oriented  extensions  to 
Pascal.    I haven't decided whether to make use of these features,  for  two reasons. First of all, many of you 
who have been following this series may still not have 5.5, and I certainly don't want to force anyone to have to 
go out and  buy  a  new  compiler  just  to  complete the series.  Secondly, I'm not convinced that the O-O 
extensions have all that much value for this application.  We've been having some discussions  about that in 
CompuServe's CLM  forum,  and  so  far we've  not found any compelling reason  to  use  O-O  constructs. This 
is another of those areas where I could  use  some  feedback from you readers.  Anyone want to vote for Turbo 
5.5 and O-O?  .  

In any case, after  the  next few installments in the series, the plan  is  to  upload to you a complete set of Units,  
and complete functioning compilers as  well.    The  plan, in fact, is to have THREE compilers:  One for  a 
single-character version of TINY (to use  for  our  experiments), one for TINY and one for KISS.  I've pretty 
much isolated the differences between TINY and KISS, which are these:

   o TINY will support only two data types: The character and the 16-bit  integer.    I may also  try 
      to  do  something  with strings, since  without  them  a  compiler  would  be pretty useless. 
      KISS will support all  the  usual  simple  types, including arrays and even floating point.

   o TINY will only have two control constructs, the  IF  and the WHILE.  KISS will  support  a  very 
      rich set of constructs, including one we haven't discussed here before ... the CASE.

   o KISS will support separately compilable modules.

One caveat: Since I still don't know much  about  80x86 assembler language, all these compiler modules  will 
still  be  written to support 68000 code.  However, for the programs I plan  to upload, all the code generation 
has  been  carefully encapsulated into a single unit, so that any enterprising student should  be  able to easily 
retarget to any other processor.  This task is "left as an exercise for the  student."    I'll  make an offer right here 
and now:  For the person who provides us the first robust retarget to 80x86, I will be happy to discuss shared 
copyrights and royalties from the book that's upcoming.

But enough talk.  Let's get on with  the  study  of  types.  As I said  earlier,  we'll  do  this  one  as  we  did  in 
the  last installment:  by  performing experiments  using  single-character tokens.

THE SYMBOL TABLE
It should be apparent that, if we're going to deal with variables of different types, we're going  to need someplace 
to record what those  types are.  The obvious vehicle for  that  is  the  symbol table, and we've already  used  it 
that  way to distinguish, for example,   between  local  and  global  variables,  and   between variables and 
procedures.

The  symbol  table   structure  for  single-character  tokens  is particularly simple, and we've used  it several 
times before.  To deal with it, we'll steal some procedures that we've used before.

**Begin with file: Cradle14.c

First, we need to declare the symbol table itself:**

  char Look;            /* look ahead character */
  char ST[26];
  char LvarTyp; /* global: LeftVarType */

Next, we need to make sure it's initialized as part  of procedure Init:**

void Init() /* Initialize */
{   int i;



    _GetChar();
    SkipWhite();
    for(i=0; i<26; i++)
    {   ST[i] = '?';
    }
}
/*-------------------------------*/

We don't really need  the  next procedure, but it will be helpful for debugging.  All it does is to dump the contents 
of the symbol table:**

**Add to Prototypes:
  void DumpTable(void);

void DumpTable() /* Dump the Symbol Table */
{   int i;

    for(i=0; i<26; i++)
    {   printf("%c\t%c\n", i+'A', ST[i]);
    }
}
/*-------------------------------*/

It really doesn't matter much where you put this procedure  ... I plan to cluster all the symbol table routines 
together, so  I put mine just after the error reporting procedures.

If  you're  the  cautious type (as I am), you might want to begin with a test program that does nothing but 
initializes, then dumps the table.  Just to be sure that we're all on the same wavelength here, I'm reproducing the 
entire program below, complete with the new  procedures.  Note that this  version  includes  support  for white 
space:**

void main() /* Main Program */
{
    Init();
    DumpTable();
}
/*-------------------------------*/

OK, run this program.  You  should  get a (very fast) printout of all the letters of  the  alphabet  (potential 
identifiers), each followed by  a  question  mark.    Not  very exciting, but it's a start.

Of course, in general we  only  want  to  see  the  types  of the variables that have been defined.  We can 
eliminate the others by modifying DumpTable with an IF test.  Change the loop to read:**

void DumpTable() /* Dump the Symbol Table */
{   int i;

    for(i=0; i<26; i++)
    {   if(ST[i] != '?')
        {   printf("%c\t%c\n", i+'A', ST[i]);
        }
    }
}
/*-------------------------------*/



Now, run the program again.  What did you get?

Well, that's even more  boring  than before!  There was no output at all, since at this point NONE of the names 
have been declared. We  can  spice  things up a  bit  by  inserting  some  statements declaring some entries in 
the main program.  Try these:**

     ST[('A' - 65)] = 'a';
     ST[('P' - 65)] = 'b';
     ST[('X' - 65)] = 'c';

void main() /* Main Program */
{
    Init();
    ST[('A' - 65)] = 'a';
    ST[('P' - 65)] = 'b';
    ST[('X' - 65)] = 'c';
    DumpTable();

}
/*-------------------------------*/

This time, when  you  run  the  program, you should get an output showing that the symbol table is working right.

ADDING ENTRIES
Of course, writing to the table directly is pretty poor practice, and not one that will  help  us  much  later.   What 
we need is a procedure to add entries to the table.  At the same time, we know that  we're going to need to test 
the table, to make sure that we aren't redeclaring a variable that's already in use  (easy  to do with only 26 
choices!).  To handle all this, enter  the following new procedures:**

**Add to Prototypes:
  void CheckDup(char); char TypeOf(char);
   int InTable(char); void AddEntry(char,char);

char TypeOf(char Name) /* Get Type of Symbol */
{   char Typ;
    int ndx;

    ndx = GetNdx(Name);
    Typ = ST[ndx];
    return Typ;
}/*-------------------------------*/

int InTable(char Name) /* Look for Symbol in Table */
{   int rval=0, ndx;

    ndx = GetNdx(Name);
    if(ST[ndx] != '?')
    {   rval = 1;
    }
    return rval;
}



/*-------------------------------*/

void CheckDup(char Name) /* Check for a Duplicate Variable Name */
{   char a_string[20];

    if(InTable(Name))
    {   strcpy(a_string, "Duplicate Name:   ");
        a_string[16] = Name;
        _Abort(a_string);
    }
}
/*-------------------------------*/

void AddEntry(char Name, char T) /* Add Entry to Table */
{   int ndx;

    CheckDup(Name);
    ndx = GetNdx(Name);
    ST[ndx] = T;
}
/*-------------------------------*/

Now change the three lines in the main program to read:**

     AddEntry('A', 'a');
     AddEntry('P', 'b');
     AddEntry('X', 'c');

void main() /* Main Program */
{
    Init();
    AddEntry('A', 'a');
    AddEntry('P', 'b');
    AddEntry('X', 'c');
    DumpTable();
}
/*-------------------------------*/

and run the program again.  Did it work?  Then we have the symbol table routines needed to support our work 
on types.  In  the next section, we'll actually begin to use them.

ALLOCATING STORAGE
In  other programs like this one,  including  the  TINY  compiler itself, we have  already  addressed the issue of 
declaring global variables, and the  code  generated  for  them.    Let's  build a vestigial version of a "compiler" 
here, whose only function is to allow  us   declare  variables.    Remember,  the  syntax  for  a declaration is:**

     <data decl> = VAR <identifier>

Again, we can lift a lot of the code from previous programs.  The following are stripped-down versions of those 
procedures.   They are greatly simplified  since  I  have  eliminated  niceties like variable lists and  initializers.   In 
procedure Alloc, note that the  new call to AddEntry will also  take  care  of  checking for duplicate 
declarations:**



**Add to Prototypes:
  void Alloc(char); void Decl(void);
  void TopDecls(void);

void Alloc(char Name) /*  Allocate Storage for a Variable */
{
    AddEntry(Name, 'v');
    printf("%c\tDW  0\n", Name);
}
/*-------------------------------*/

void Decl() /* Parse and Translate a Data Declaration */
{   char Name;

    Match('v');
    Name = GetName();
    Alloc(Name);
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{   char a_string[25];

    while(Look != '.')
    {   switch(Look)
        {   case 'v':
               Decl();
               break;
            default:
               strcpy(a_string, "Unrecognized Keyword  ");
               a_string[21] = Look;
               _Abort(a_string);
               break;
        }
        Fin();
    }
}
/*-------------------------------*/

Now, in the  main  program,  add  a  call to TopDecls and run the program.  Try allocating a  few variables, and 
note the resulting code generated.  This is old stuff for you, so the results should look familiar.  Note from the 
code for TopDecls that  the program is ended by a terminating period.

**Try: vavbvc.

While you're at it,  try  declaring  two  variables with the same name, and verify that the parser catches the error.

DECLARING TYPES
Allocating storage of different sizes  is  as  easy  as modifying procedure TopDecls to recognize more than one 
keyword.  There are a  number  of  decisions to be made here, in terms  of  what  the syntax should be, etc., but 
for now I'm  going  to  duck  all the issues and simply declare by  executive fiat that our syntax will be:**



     <data decl> = <typename>  <identifier>

where:**

     <typename> = BYTE | WORD | DOUBLE

(By  an amazing coincidence, the first  letters  of  these  names happen  to  be  the  same  as  the  **x86 
assembly  code  length specifications, so this choice saves us a little work.)

We can create the code to take care of  these  declarations  with only slight modifications.  In the routines below, 
note that I've separated  the  code  generation parts of Alloc  from  the  logic parts.  This  is  in  keeping  with our 
desire to encapsulate the machine-dependent part of the compiler.**

**Add changes to Prototypes:
  void AllocVar(char,char);
  void Alloc(char,char);

void AllocVar(char Name, char T) /* Generate Code for Allocation */
{ /*of a Variable */
    printf("%c\tD%c  0\n", Name,T);
}
/*-------------------------------*/

void Alloc(char Name, char T) /*  Allocate Storage for a Variable */
{
    AddEntry(Name, T);
    AllocVar(Name, T);
}
/*-------------------------------*/

void Decl() /* Parse and Translate a Data Declaration */
{   char Name, Typ;

    Typ = GetName();
    Name = GetName();
    Alloc(Name,Typ);
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{   char a_string[25];

    while(Look != '.')
    {   switch(Look)
        {   case 'b': /* byte */
            case 'w': /* word */
            case 'd': /* double */
               Decl();
               break;
            default:
               strcpy(a_string, "Unrecognized Keyword  ");



               a_string[21] = Look;
               _Abort(a_string);
               break;
        }
        Fin();
    }
}
/*-------------------------------*/

**Make the changes shown to these procedures, and give the  thing a try.    Use  the  single  characters  'b', 'w' 
and  'd'  for the keywords (they must be lower case,  for  now).  You will see that in each case, we are allocating 
the proper storage  size.    Note from the dumped symbol table that the sizes are also recorded for later use. 
What later use?  Well, that's the subject of the rest of this installment.
**Try: bawbdc.

meaning:    Byte - A
  Word - B
Double - C

ASSIGNMENTS
Now that we can declare variables of different  sizes,  it stands to reason that we ought to be able  to  do 
something  with them. For our first trick, let's just try loading them into our working register, **AX.  It makes 
sense to use the same  idea  we used for Alloc; that is, make a load procedure that can load more than one 
size.    We  also  want  to continue to encapsulate the  machine-dependent stuff.  The load procedure looks like 
this:**

**Add to Prototypes:
  void LoadVar(char,char); void Move(char,char *,char *);
   int IsVarType(char); char VarType(char);
  void Load(char);

void LoadVar(char Name, char Typ) /*Load a Variable to Primary */ 
{   char Namestr[5] = {0,0}; /* Register */
    char a_string[20];

    Namestr[0] = Name;
    if(Typ == 'B')
    {   Move(Typ,Namestr,"al");
    }
    else if(Typ == 'W')
    {   Move(Typ,Namestr,"ax");
    }
    else
    {   strcpy(a_string, "word ptr ");
        strcat(a_string, Namestr);
        Move(Typ,a_string,"ax");
        strcpy(a_string, "word ptr ");
        strcat(a_string, Namestr);
        strcat(a_string, "+2");
        Move(Typ,a_string,"dx");
    }
}
/*-------------------------------*/

On  the  **x86,  at least, it happens that many instructions turn out to be **MOV's.  It turns out to be useful to 



create a separate code generator just for these instructions, and then  call  it as needed:**

void Move(char Size,char *Source,char *Dest) 
{   char a_string[30]; /* Generate a Move Instruction */

    strcpy(a_string, "mov  ");
    strcat(a_string, Dest);
    strcat(a_string, ", ");
    strcat(a_string, Source);
    EmitLn(a_string);
}
/*-------------------------------*/

Note that these  two  routines are strictly code generators; they have no error-checking or other  logic.  To 
complete the picture, we need one more layer of software that provides these functions.

First of all, we need to make sure that the  type  we are dealing with is a  loadable  type.    This  sounds like a 
job for another recognizer:**

int IsVarType(char ch) /* Recognize a Legal Variable Type */
{   int rval=0;

    if(strchr("BWD", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

Next, it would be nice to have a routine that will fetch the type of a variable from the symbol table, while 
checking  it  to  make sure it's valid:**

char VarType(char Name) /* Get a Variable Type from the Symbol Table */
{   char Typ, a_string[35];

    Typ = TypeOf(Name);
    if(! IsVarType(Typ))
    {   strcpy(a_string, "Identifier \' \' is not a variable");
        a_string[12] = Name;
        _Abort(a_string);
    }
    return Typ;
}
/*-------------------------------*/

Armed with these  tools,  a  procedure  to cause a variable to be loaded becomes trivial:**

void Load(char Name) /* Load a Variable to the Primary Register */
{   char Typ;

    Typ = VarType(Name);
    LoadVar(Name, Typ);



}
/*-------------------------------*/

(NOTE to the  concerned:  I  know,  I  know, all this is all very inefficient.  In a production  program,  we 
probably  would take steps to avoid such deep nesting of procedure calls.  Don't worry about it.  This is an 
EXERCISE, remember?  It's more important to get it  right  and  understand  it, than it is to make it get the 
wrong  answer,  quickly.   If you get your compiler completed and find that you're unhappy  with  the speed, feel 
free to come back and hack the code to speed it up!)

It would be a good idea to test the program at this point.  Since we don't have a  procedure  for  dealing  with 
assignments yet, I just added the lines:**

     Init();
     TopDecls();
     DumpTable();
     Load('A');
     Load('B');
     Load('C');
     Load('X');

to  the end of the main program.  Thus, after  the  declaration  section  is complete, they will be executed to 
generate code  for  the loads. You can play around with  this, and try different combinations of declarations to 
see how the errors are handled.

I'm sure you won't be surprised to learn  that  storing variables is a lot like  loading  them.  The necessary 
procedures are shown next:**

**Add to Prototypes:
  void StoreVar(char,char); void Store(char);
  void Expression(void); void Assignment(void);
  void Block(void);

void StoreVar(char Name,char Typ) /* Store Primary to Variable */
{   char a_string[20];

    strcpy(a_string, "lea  di,   ");
    a_string[9] = Name;
    EmitLn(a_string);
    if(Typ == 'B')
    {   Move(Typ,"al","[di]");
    }
    else if(Typ == 'W')
    {   Move(Typ,"ax","[di]");
    }
    else
    {   Move(Typ,"ax","W[di]");
        Move(Typ,"dx","W[di+2]");
    }
}
/*-------------------------------*/

void Store(char Name) /* Store a Variable from the Primary Register */
{   char Typ;

    Typ = VarType(Name);



    StoreVar(Name, Typ);
}
/*-------------------------------*/

You can test this one the same way as the loads.**

    Store('A');
    Store('B');
    Store('C');
    Store('X');

Now, of course, it's a RATHER  small  step to use these to handle assignment  statements.  What we'll do is  to 
create  a  special version   of  procedure  Block  that  supports  only   assignment statements, and also a 
special  version  of Expression that only supports single variables as legal expressions.  Here they are:**

void Expression() /* Parse and Translate an Expression */
{   char Name;

    Name = GetName();
    Load(Name);
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{   char Name;

    Name = GetName();
    Match('=');
    Expression();
    Store(Name);
}
/*-------------------------------*/

void Block() /* Parse and Translate a Block of Statements */
{
    while(Look != '.')
    {   Assignment();
        Fin();
    }
}
/*-------------------------------*/

(It's worth noting that, if  anything,  the  new  procedures that permit us to manipulate types  are, if anything, 
even simpler and cleaner than what we've seen before.  This is  mostly  thanks  to our efforts to encapsulate the 
code generator procedures.)

There is one small, nagging problem.  Before, we used  the Pascal terminating period to get us out of procedure 
TopDecls.   This is now the wrong  character  ...  it's  used to terminate Block.  In previous programs, we've 
used the BEGIN symbol  (abbreviated 'b') to get us out.  But that is now used as a type symbol.

The solution, while somewhat of a kludge, is easy enough.   We'll use  an  UPPER CASE 'B' to stand for the 
BEGIN.   So  change  the character in the WHILE loop within TopDecls, from '.' to 'B', and everything will be 
fine.



**    while(Look != 'B')

Now, we can  complete  the  task  by changing the main program to read:**

void main() /* Main Program */
{
    Init();
    TopDecls();
    Match('B');
    Fin();
    Block();
    DumpTable();
}
/*-------------------------------*/

(Note  that I've had to sprinkle a few calls to Fin around to get us out of Newline troubles.)

OK, run this program.  Try the input:

     ba        { byte a }   *** DON'T TYPE THE COMMENTS!!! ***
     wb        { word b }
     wc        { word c }
     B         { begin  }
     a=a
     a=b
     a=c
     b=a
     b=b
     b=c
     c=a
     c=b
     c=c
     .

For  each  declaration,  you  should  get  code   generated  that allocates storage.  For each assignment, you 
should get code that loads a variable of the correct size, and stores one, also of the correct size.

There's only one small  little  problem:    The generated code is WRONG!

Look at the code for a=c above.  The code is:**

MOV  AX, word ptr C
MOV  DX, word ptr C+2
LEA  DI, A
MOV [DI], AL

This code is correct.  It will cause the lower eight bits of C to be stored into A, which is a reasonable behavior. 
It's about all we can expect to happen.

But now, look at the opposite case.  For c=a, the  code generated is:**

MOV  AL, A
LEA  DI, C
MOV  W[DI], AX



MOV  W[DI+2], DX

This is  NOT  correct.    It will cause the byte variable A to be stored into the lower eight bits  of  **AX. 
According to the rules for the **x86 processor,  the  upper 24 bits are unchanged.  This means  that when we 
store the entire 32  bits  into  C,  whatever garbage  that  was  in those high bits will also get stored.  Not good.

So what  we  have  run  into here, early on, is the issue of TYPE CONVERSION, or COERCION.

Before we do anything with  variables of different types, even if it's just to  copy  them, we have to face up to the 
issue.  It is not the most easy part of a compiler.  Most of  the  bugs  I have seen in production compilers  have 
had to do with errors in type conversion for  some obscure combination of arguments.  As usual, there is a 
tradeoff between compiler complexity and the potential quality of the  generated  code,  and  as usual, we will 
take the path that keeps the  compiler  simple.  I think you'll find that, with this approach, we can keep the 
potential complexity in check rather nicely.

THE COWARD'S WAY OUT
Before we get into the details (and potential complexity) of type conversion,  I'd  like  you to see that there is one 
super-simple way to solve the problem: simply promote every variable to a long integer when we load it!

This takes the addition of only one line to LoadVar,  although if we  are  not  going to COMPLETELY ignore 
efficiency, it should be guarded by an IF test.  Here is the modified version:**

void LoadVar(char Name, char Typ) /* Load a Variable to Primary */
{   char Namestr[5] = {0,0}; /* Register */
    char a_string[20];

    Namestr[0] = Name;
    if(Typ != 'D')
    {   EmitLn("mov  ax, 0");
        EmitLn("mov  dx, 0");
    }
    if(Typ == 'B')
    {   Move(Typ,Namestr,"al");
    }
    else if(Typ == 'W')
    {   Move(Typ,Namestr,"ax");
    }
    else
    {   strcpy(a_string, "word ptr ");
        strcat(a_string, Namestr);
        Move(Typ,a_string,"ax");
        strcpy(a_string, "word ptr ");
        strcat(a_string, Namestr);
        strcat(a_string, "+2");
        Move(Typ,a_string,"dx");
    }
}
/*-------------------------------*/

(Note that StoreVar needs no similar change.)

If you run some tests with  this  new version, you will find that everything  works correctly now, albeit sometimes 
inefficiently. For example, consider the case  a=b  (for  the  same declarations shown above).  Now the 
generated code turns out to be:**



MOV  AX, 0
MOV  DX, 0
MOV  AX, B
LEA  DI, A
MOV  [DI], AL

In  this  case,  the **"MOV DX,0"  turns out not to be necessary, since the result is going into a byte-sized 
variable.  **[snip]

I should point out that, by setting the high bits to zero, we are in effect treating the numbers as UNSIGNED 
integers.  If  we want to treat them as signed ones instead (the more  likely  case)  we should do a  sign 
extension  after  the load, instead of a clear before it. **[snip]

A MORE REASONABLE SOLUTION
As we've seen, promoting  every  variable  to  long while it's in memory solves the problem, but it can hardly be 
called efficient, and  probably wouldn't be acceptable even for  those  of  us  who claim be unconcerned about 
efficiency.    It  will mean that all arithmetic operations will be done to 32-bit accuracy, which will DOUBLE the 
run time  for  most operations, and make it even worse for multiplication  and division.  For those operations, we 
would need to call subroutines to do  them,  even if the data were byte or  word types.  The whole thing is sort of 
a cop-out, too, since it ducks all the real issues.

OK, so that solution's no good.  Is there still a relatively easy way to get data conversion?  Can we still Keep It 
Simple?

Yes, indeed.   All we have to do is to make the conversion at the other end ... that is, we convert on the way 
_OUT_, when the data is stored, rather than on the way in.

But, remember, the storage part  of the assignment is pretty much independent of the data load, which is taken 
care of by procedure Expression.    In  general  the  expression  may  be  arbitrarily complex, so how can 
procedure Assignment know what  type  of data is left in register **AX ?

Again,  the  answer  is  simple:    We'll  just  _ASK_  procedure Expression!  The answer can be returned as a 
function value.

All of this requires several procedures to be  modified,  but the mods, like the method, are quite simple.  First of 
all,  since we aren't requiring LoadVar to do  all the work of conversion, let's go back to the simple version:**

**Add changes to Prototypes:
  void Convert(char,char); char Expression(void);
  char Load(char);

void LoadVar(char Name, char Typ) /* Load a Variable to Primary */
{   char Namestr[5] = {0,0}; /* Register */
    char a_string[20];

    Namestr[0] = Name;
    if(Typ == 'B')
    {   Clear("ax");
        Move(Typ,Namestr,"al");
        if(LvarTyp == 'D')
        {   Clear("dx");
        }
    }
    else if(Typ == 'W')
    {   Move(Typ,Namestr,"ax");



        if(LvarTyp == 'D')
        {   Clear("dx");
        }
    }
    else
    {   strcpy(a_string, "word ptr ");
        strcat(a_string, Namestr);
        Move(Typ,a_string,"ax");
        strcpy(a_string, "word ptr ");
        strcat(a_string, Namestr);
        strcat(a_string, "+2");
        Move(Typ,a_string,"dx");
    }
}
/*-------------------------------*/

Next, let's add a  new  procedure that will convert from one type to another:**

void Convert(char Source, char Dest) /* Convert a Data Item from One */
{ /* Type to Another */
    if(Source != Dest)
    {   if(Source == 'B')
        {   EmitLn("and  ax, 0FFH");
            if(Dest == 'D')
            {   EmitLn("mov  dx, 0");
            }
        }
        else if(Source == 'W')
        {   if(Dest == 'D')
            {   EmitLn("mov  dx, 0");
            }
        }
    }
}
/*-------------------------------*/

Next, we need to do  the  logic  required  to  load  and  store a variable of any type.  Here are the routines for 
that:**

char Load(char Name)  /* Load a Variable to the Primary Register */
{   char Typ;

    Typ = VarType(Name);
    LoadVar(Name, Typ);
    return Typ;
}
/*-------------------------------*/

void Store(char Name,char T1) /* Store a Variable from the */
{ /* Primary Register */
    StoreVar(Name, LvarTyp);
}
/*-------------------------------*/

Note that Load is a function, which not only emits the code for a load, but also returns the variable type.  In this 



way, we always know what type of data we  are  dealing  with.  When we execute a Store,  we pass it the 
current type of the variable in **AX.  Since Store also knows the  type  of  the  destination variable, it can 
convert as necessary.

Armed  with all these new routines,  the  implementation  of  our rudimentary   assignment   statement  is 
essentially   trivial. Procedure Expression now becomes a  function,  which  returns its type to procedure 
Assignment:**

char Expression() /* Parse and Translate an Expression */
{   char Name, Typ;

    Name = GetName();
    Typ = Load(Name);
    return Typ;
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{   char Name, Typ;

    Name = GetName();
    LvarTyp = TypeOf(Name); /* save Left-Var type */
    Match('=');
    Typ = Expression();
    Store(Name,Typ);
}
/*-------------------------------*/

Again, note how  incredibly  simple these two routines are. We've encapsulated  all the type logic into Load  and 
Store,  and  the trick of  passing  the  type  around  makes  the rest of the work extremely easy.    Of  course, 
all  of  this is for our special, trivial case of Expression.  Naturally, for the  general  case it will have to get more 
complex.  But  you're  looking  now  at the FINAL version of procedure Assignment!

All this seems like a very  simple  and clean solution, and it is indeed.   Compile this program and run the  same 
test  cases  as before.    You will see that all  types  of  data  are  converted properly, and there are few if any 
wasted instructions.  Only the byte-to-long conversion uses two instructions where one would do, and we could 
easily modify Convert to handle this case, too.

Although we haven't considered unsigned variables in this case, I think you can see  that  we could easily fix up 
procedure Convert to deal with these types as well.  This is  "left  as an exercise for the student."

LITERAL ARGUMENTS
Sharp-eyed readers might have noticed, though, that we don't even have a proper form of a simple factor yet, 
because we don't allow for loading literal constants,  only  variables.   Let's fix that now.

To begin with, we'll need a GetNum function.  We've  seen several versions of this, some returning  only a single 
character, some a string, and some an integer.   The  one needed here will return a LongInt, so that it can 
handle anything we  throw  at  it.   Note that no type information is returned here: GetNum doesn't concern itself 
with how the number will be used:**

**Add changes to Prototypes:
  long GetNum(void); char LoadNum(long);
  void LoadConst(long,char);



long GetNum() /* Get a Number */
{   long Val=0;
    int x;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   x = Look - '0';
        Val = 10 * Val + x;
        _GetChar();
    }
    SkipWhite();
    return Val;
}
/*-------------------------------*/

Now, when dealing with  literal  data,  we  have one little small problem.   With variables, we know what  type 
things  should  be because they've been declared to be  that  type.  We have no such type information for 
literals.   When the programmer says, "-1," does that mean a byte, word, or longword  version?    We  have no 
clue.  The obvious thing to do would be to  use  the largest type possible, i.e. a longword.    But that's a bad 
idea, because when we get to more complex expressions, we'll find that it will cause every expression involving 
literals  to  be  promoted to long, as well.

A better approach is to select a type based upon the value of the literal, as shown next:**

char LoadNum(long Num) /* Load a Constant to the Primary Register */
{   char Typ;

    if(abs(Num) <= 127)
    {   Typ = 'B';
    }
    else if(abs(Num) <= 32767)
    {   Typ = 'W';
    }
    else
    {   Typ = 'D';
    }
    LoadConst(Num, Typ);
    return Typ;
}
/*-------------------------------*/

(I know, I know, the number base isn't really symmetric.  You can store -128 in a single byte,  and  -32768  in a 
word.  But that's easily fixed, and not  worth  the time or the added complexity to fool with it here.  It's the 
thought that counts.)

Note  that  LoadNum  calls  a  new version of the code  generator routine  LoadConst, which has an added 
argument  to  define  the type:**

void LoadConst(long Num,char Typ) /* Load a Constant to the Primary */
{   int mask1=16384, DX=0; /* Register(s) */
    long base=1073741824;
    unsigned AX=0;



    char temp[12];

    if(Typ == 'B')
    {   sprintf(temp, "%Ld", Num);
        Clear("ax");
        Move(Typ,temp,"al");
        if(LvarTyp == 'D')
        {   Clear("dx");
        }
    }
    else if(Typ == 'W')
    {   sprintf(temp, "%Ld", Num);
        Move(Typ,temp,"ax");
        if(LvarTyp == 'D')
        {   Clear("dx");
        }
    }
    else
    {   while(base >= 65536)      /* while the upper 16 bits */
        {   if(Num >= base)       /* test current bit value */
            {   DX = DX + mask1;  /* add the bit value to DX */
                Num = Num - base;
                base = base/2;    /* step down to next bit */
                mask1 = mask1/2;  /* next lower bit value */
            }
            else
            {   base = base/2;    /* step down to next bit */
                mask1 = mask1/2;  /* next lower bit value */
            }
        }
        AX = Num;           /* assign AX the remaining 16 bits */
        sprintf(temp, "%u", AX);
        Move(Typ,temp,"ax");
        sprintf(temp, "%d", DX);
        Move(Typ,temp,"dx");
    }
}
/*-------------------------------*/

**Note: since the standard 8086/8088 registers are only 16-bits wide (as opposed to the 68000's 32-bits), the 
above LoadConst code was significantly modified, where it pertains to loading the Double Word or Long type of 
data into the AX and DX registers. The procedure separates the upper 16 bits and loads them into the DX 
register and the remaining lower 16 bits into the AX register. A presumption is made here that the largest value 
for a Long Integer (double word) will be a signed 2,147,483,647.

Now  we can modify procedure Expression  to  accomodate  the  two possible kinds of factors:**

char Expression() /* Parse and Translate an Expression */
{   char Name, Typ;
    long Num;

    if(isalpha(Look))
    {   Name = GetName();
        Typ = Load(Name);
    }
    else
    {   Num = GetNum();



        Typ = LoadNum(Num);
    }
    return Typ;
}
/*-------------------------------*/

(Wow, that sure didn't hurt too bad!  Just a  few  extra lines do the job.)

OK,  compile  this code into your program  and  give  it  a  try. You'll see that it now works for either variables or 
constants as valid expressions.

ADDITIVE EXPRESSIONS
If you've been following this series from the beginning, I'm sure you  know  what's coming next:  We'll  expand 
the  form  for  an expression   to   handle   first   additive   expressions,   then multiplicative, then general 
expressions with parentheses.

The nice part is that we already have a pattern for  dealing with these more complex expressions.  All we have 
to  do  is  to make sure that  all the procedures called by Expression (Term, Factor, etc.)  always  return a type 
identifier.   If  we  do  that,  the program structure gets changed hardly at all.

The  first  step  is  easy:  We can rename our existing  function Expression  to  Term,  as  we've  done so 
many times before,  and create the new version of Expression:**

**Add changes to Prototypes:
  char Term(void);   char Expression(void);
  char Unop(void);   char Add(char);
  char Subtract(char);   void Pop(char);
  void Convert(char,char,char);
  char Promote(char,char,char);
  char SameType(char,char);   char PopAdd(char,char);
  char PopSub(char,char);   void GenAdd(char);
  void GenSub(char);   void Clear(char *);
  void Push(char);

char Expression() /* Parse and Translate an Expression */
{   char Typ;

    if(IsAddop(Look))
    {   Typ = Unop();
    }
    else
    {   Typ = Term();
    }
    while(IsAddop(Look))
    {   Push(Typ);
        switch(Look)
        {   case '+':
               Typ = Add(Typ);
               break;
            case '-':
               Typ = Subtract(Typ);
               break;
            default:
               break;
        }



    }
    return Typ;
}
/*-------------------------------*/

Note  in  this  routine how each  procedure  call  has  become  a function call, and how  the  local  variable  Typ 
gets updated at each pass.

Note also the new call to a function  Unop,  which  lets  us deal with a leading unary minus.  This change is not 
necessary  ... we could  still  use  a form more like what we've done before.  I've chosen  to  introduce  UnOp as 
a separate routine because it will make it easier, later, to produce somewhat better code than we've been 
doing.    In other words, I'm looking ahead to optimization issues.

For  this  version,  though, we'll retain the same dumb old code, which makes the new routine trivial:**

char Unop() /* Process a Term with Leading Unary Operator */
{   char Typ;

    Clear("ax");
    Typ = 'W';
    if(LvarTyp == 'D')
    {   Clear("dx");
        Typ = 'D';
    }
    return Typ;
}
/*-------------------------------*/

Procedure  Push  is  a code-generator routine, and now has a type argument:**

void Push(char Size) /* Push Primary onto Stack */
{
    if(Size != 'D')
    {   if(LvarTyp == 'D')
        {   EmitLn("push  dx");  /* high word */
        }
        EmitLn("push  ax");
    }
    else
    {   EmitLn("push  dx");  /* high word */
        EmitLn("push  ax");  /* low word  */
    }
}
/*-------------------------------*/

Now, let's take a look at functions Add  and  Subtract.    In the older versions of these routines, we let them call 
code generator routines PopAdd and PopSub.    We'll  continue  to do that, which makes the functions 
themselves extremely simple:**

char Add(char T1) /* Recognize and Translate an Add */
{   char Typ, T2;

    Match('+');
    T2 = Term();



    Typ = PopAdd(T1, T2);
    return Typ;
}
/*-------------------------------*/

char Subtract(char T1) /* Recognize and Translate a Subtract */
{   char Typ, T2;

    Match('-');
    T2 = Term();
    Typ = PopSub(T1, T2);
    return Typ;
}
/*-------------------------------*/

The simplicity is  deceptive,  though, because what we've done is to defer all the logic to PopAdd and PopSub, 
which are  no longer just code generation routines.    They must also now take care of the type conversions 
required.

And just what conversion is that?  Simple: Both arguments must be of the same size, and the result  is  also  of 
that  size.   The smaller of the two arguments must be "promoted" to  the  size  of the larger one.

But  this  presents a bit of a problem.  If the  argument  to  be promoted is the second argument  (i.e.  in  the 
primary register AX), we  are  in  great  shape.  If it's not, however, we're in a fix: we can't change the size of the 
information  that's already been pushed onto the stack.

The solution is simple but a little painful: 
The  first  step in this new structure  is  to  introduce  a  Pop procedure analogous to the Push.   This procedure 
will always Pop the top element of the stack into CX:**

void Pop(char Size) /* Pop Stack into Secondary Register */
{
    if(Size != 'D')
    {   EmitLn("pop  bx");
        if(LvarTyp == 'D')
        {   EmitLn("pop  cx");  /* high word */
        }
    }
    else
    {   EmitLn("pop  bx");  /* low word  */
        EmitLn("pop  cx");  /* high word */
    }
}
/*-------------------------------*/

The general idea is that all the "Pop-Op" routines can  call this one.    When  this is done, we will then have 
both  operands  in registers, so we can promote whichever  one  we need to.  To deal with this, procedure 
Convert needs another argument.**

void Convert(char Source,char Dest,char Reg) /* Convert a Data Item */
{ /* from One Type to Another */
    if(LvarTyp == 'D')
    {   if(Source != Dest)
        {   if(strchr("BW", Source))



            {   if((Dest == 'D') && (Reg == 'T'))
                {   Clear("cx");
                }
                if((Dest == 'D') && (Reg == 'F'))
                {   Clear("dx");
                }
            }
        }
    }
}
/*-------------------------------*/

The next function does a conversion, but only if the current type T1  is  smaller  in size than the desired  type 
T2.    It  is  a function, returning the final type to let us know what it decided to do:**

char Promote(char T1,char T2,char Reg) /* Promote the Size of a */
{   char Typ; /* Register Value */

    Typ = T1;
    if(T1 != T2)
    {   if(strchr("BW", T1))
        {   if(T2 == 'D')
            {   Convert(T1, T2, Reg);
                Typ = T2;
            }
        }
    }
    return Typ;
}
/*-------------------------------*/

Finally, the following function forces the two registers to be of the same type:**

char SameType(char T1,char T2) /* Force both Arguments to Same Type */
{   char Typ;

    T1 = Promote(T1, T2, ' ');
    Typ = Promote(T2, T1, ' ');
    return Typ;
}
/*-------------------------------*/

These new routines give us the ammunition we need  to  flesh  out PopAdd and PopSub:**

char PopAdd(char T1,char T2) /*Generate Code to Add Primary to */
{ /* the Stack */
    Pop(T1);
    T2 = SameType(T1, T2);
    GenAdd(T2);
    return T2;
}
/*-------------------------------*/



char PopSub(char T1,char T2) /* Generate Code to Subtract Primary */
{ /* from the Stack */
    Pop(T1);
    T2 = SameType(T1, T2);
    GenSub(T2);
    return T2;
}
/*-------------------------------*/

After  all   the   buildup,   the   final   results   are  almost anticlimactic.  Once  again,  you can see that the logic 
is quite simple.  All the two routines do is to pop the  top-of-stack into CX, force the two operands to be the 
same size, and then generate the code.

Note  the  new  code generator routines GenAdd and GenSub.  These are vestigial forms of the ORIGINAL 
PopAdd and PopSub.   That is, they  are pure code generators, producing a  register-to-register add or 
subtract:**

void GenAdd(char Size) /* Add Top of Stack to Primary */
{
    if(LvarTyp == 'D')
    {   EmitLn("add  ax, bx");
        EmitLn("adc  dx, cx");
    }
    else
    {   EmitLn("add  ax, bx");
    }
}
/*-------------------------------*/

void GenSub(char Size) /* Subtract Primary from Top of Stack */
{
    if(LvarTyp == 'D')
    {   EmitLn("xchg ax, bx");
        EmitLn("xchg dx, cx");
        EmitLn("sub  ax, bx");
        EmitLn("sbb  dx, cx");
    }
    else
    {   EmitLn("xchg ax, bx");
        EmitLn("sub  ax, bx");
    }
}
/*-------------------------------*/

void Clear(char *Reg) /* Clear the Primary Register */
{   char a_string[12];

    strcpy(a_string, "mov  ");
    strcat(a_string, Reg);
    strcat(a_string, ", 0");
    EmitLn(a_string);
}
/*-------------------------------*/



OK,  I grant you:  I've thrown a lot of routines at you since  we last tested the code.   But  you  have  to  admit  
that  each new routine is pretty simple and transparent.  If you (like me) don't like to test so many new  routines 
at  once, that's OK.  You can stub out routines like Convert, Promote, and SameType, since they don't  read 
any inputs.  You won't  get  the  correct  code,  of course, but things should work.  Then flesh  them  out  one  at 
a time.

When testing the program,  don't  forget  that  you first have to declare some variables, and then  start the 
"body" of the program with an upper-case  'B'  (for  BEGIN). **

bawbdcB<cr>

You should find that the parser  will  handle  any  additive  expressions.  **

a=100 <cr> a=32000 <cr> a=66000 <cr>
a=a <cr> b=b <cr> c=c <cr>
a=a+a <cr> b=b+b <cr> c=c+c <cr>

Once  all  the conversion routines are in, you should see that the  correct code is  generated,  with  type 
conversions inserted where necessary. Try mixing up variables  of  different  sizes, and also literals. Make sure 
that everything's working properly.  **

a=b <cr> a=c <cr> b=a <cr> b=c <cr> c=a <cr> c=b <cr> 
a=a+b+c <cr> b=a+b+c <cr> c=a+b+c <cr>

As  usual,  it's a good  idea  to  try  some  erroneous expressions and see how  the compiler handles them.

WHY SO MANY PROCEDURES?
At this point, you may think  I've  pretty much gone off the deep end in terms of deeply nested procedures. 
There is  admittedly a lot of overhead here.  But there's a method in my madness.  As in the case of UnOp, I'm 
looking ahead to the time when  we're going to want better code  generation.   The way the code is organized, 
we can achieve  this  without major modifications to the program. For example, in cases where the value pushed 
onto the  stack does _NOT_ have to be converted, it's still better to use the "pop and add"  instruction.    If we 
choose to test for such cases, we can embed the extra tests into  PopAdd  and  PopSub  without changing 
anything else much.

MULTIPLICATIVE EXPRESSIONS
The procedure for dealing with multiplicative  operators  is much the  same.    In  fact,  at  the  first  level,  they 
are  almost identical, so I'll just show them here without much fanfare.  The first  one  is  our  general  form  for 
Factor,  which  includes parenthetical subexpressions:**

**Add to Prototypes:
  char Factor(void); char Multiply(char);
  char Divide(char);

char Factor() /* Parse and Translate a Factor */
{   char Typ, Name;
    long Num;

    if(Look == '(')
    {   Match('(');
        Typ = Expression();
        Match(')');



    }
    else if(isalpha(Look))
    {   Name = GetName();
        Typ = Load(Name);
    }
    else
    {   Num = GetNum();
        Typ = LoadNum(Num);
    }
    return Typ;
}
/*-------------------------------*/

char Multiply(char T1) /* Recognize and Translate a Multiply */
{   char Typ, T2;

    Match('*');
    T2 = Factor();
    Typ = PopMul(T1, T2);
    return Typ;
}
/*-------------------------------*/

char Divide(char T1) /* Recognize and Translate a Divide */
{   char Typ, T2;

    Match('/');
    T2 = Factor();
    Typ = PopDiv(T1, T2);
    return Typ;
}
/*-------------------------------*/

char Term() /* Parse and Translate an Expression */
{   char Typ;

    Typ = Factor();
    while(IsMulop(Look))
    {   Push(Typ);
        switch(Look)
        {   case '*':
               Typ = Multiply(Typ);
               break;
            case '/':
               Typ = Divide(Typ);
               break;
            default:
               break;
        }
    }
    return Typ;
}
/*-------------------------------*/

These routines parallel the additive  ones  almost  exactly.   As before, the complexity is encapsulated within 



PopMul  and PopDiv. If  you'd  like  to test the program before we get into that, you can build dummy versions of 
them, similar to  PopAdd  and PopSub. Again, the code won't be correct at this point,  but  the  parser should 
handle expressions of arbitrary complexity.**

**Add to Prototypes:
  char PopMul(char,char); char PopDiv(char,char);
  void GenMult(char); void GenDiv(char);

char PopDiv(char T1,char T2) /* Generate Code to Divide Primary */
{ /* from the Stack */
    Pop(T1);
    T2 = SameType(T1, T2);
    GenDiv(T2);
    return T2;
}
/*-------------------------------*/

char PopMul(char T1,char T2) /* Generate Code to Multiply Primary */
{ /* to the Stack */
    Pop(T1);
    T2 = SameType(T1, T2);
    GenMul(T2);
    return T2;
}
/*-------------------------------*/

void GenDiv(char Size) /* Divide Primary by Top of Stack */
{
    EmitLn("xchg ax, bx");
    EmitLn("div  bx");
}
/*-------------------------------*/

void GenMult(char Size) /* Multiply Top of Stack by Primary */
{
    EmitLn("mul  bx");
}
/*-------------------------------*/

MULTIPLICATION
Once you've  convinced yourself that the parser itself is working properly, we need to figure out what it will take 
to generate the right code.  This is where  things  begin to get a little sticky, because the rules are more 
complex.

Let's take the case of multiplication first.   This  operation is similar to the "addops" in that both operands should 
be  of  the same size.  It differs in two important respects:

  o  The type of the product is typically not the same as that of the  two  operands.   For the product 
      of two words, we get a longword result.

  o  The x86 does  not support a 32 x 32 multiply, so a call to a software routine is needed.  This 
      routine will become part of the run-time library.



The actions that we have to take are best shown in  the following table:**

    AX -->  row
    BX    x column
     |      
     V

  T1 -->  |                 |                 |                 |
  T2      |                 |                 |                 |
   |      |        B        |        W        |       D         |
   V      |                 |                 |                 |
-----------------------------------------------------------------
          |                 |                 |                 |
     B    |                 |                 |                 |
          |                 | Convert BL to W | Convert BL to D |
          | MUL             | MUL             | Call MUL32      |
          | Result = W      | Result = D      | Result = D      |
          |                 |                 |                 |
-----------------------------------------------------------------
          |                 |                 |                 |
     W    | Convert AL to W |                 | Convert BX to D |
          | MUL             | MUL             | Call MUL32      |
          | Result = D      | Result = D      | Result = D      |
          |                 |                 |                 |
-----------------------------------------------------------------
          |                 |                 |                 |
     D    | Convert AL to D | Convert AX to D |                 |
          | CALL MUL32      | CALL MUL32      | CALL MUL32      |
          | Result = D      | Result = D      | Result = D      |
          |                 |                 |                 |
-----------------------------------------------------------------

This table shows the actions to be taken for each  combination of operand types.  First,  we assume a library 
routine  MUL32  which  performs  a  32  x  32 multiply, leaving a >> 32-bit << (not 64-bit) product.    If  there  is 
any overflow in the process,  we  choose to ignore it and return only the lower 32 bits. **[snip]

Now, clearly, we are going to have to generate different code for the 16-bit and 32-bit multiplies.  This is best 
done  by  having separate code generator routines for the two cases:**

**Add changes to Prototypes:
  void GenMult(char); void GenLongMult(void);
  void PopM(char,char); char SameTypeM(char,char);
  char PromoteM(char,char);

void GenMult(char Typ) /*  Multiply Top of Stack by Primary (Word) */
{
    if(Typ == 'B')
    {   EmitLn("xchg  ax, bx");
        EmitLn("mul  bl");
    }
    else
    {   EmitLn("xchg  ax, bx");
        EmitLn("xchg  dx, cx");
        EmitLn("mul  bx");
    }



}
/*-------------------------------*/

void GenLongMult() /* Multiply Top of Stack by Primary (Long) */
{
    EmitLn("xchg  ax, bx");
    EmitLn("xchg  dx, cx");
    EmitLn("call  MUL32");
}
/*-------------------------------*/

An examination of the code below for PopMul  should  convince you that the conditions in the table are met:**

char PopMul(char T1,char T2) /* Generate Code to Multiply Primary */
{   char T, Typ; /* by Stack */

    PopM(T1,T2);
    T = SameTypeM(T1, T2);
    if(strchr("BW", T))
    {   GenMult(T);
    }
    else
    {   GenLongMult();
    }
    if(T == 'B')
    {   Typ = 'W';
    }
    else
    {   Typ = 'D';
    }
    return Typ;
}
/*-------------------------------*/

**Note: the original Pop function used for the AdOps doesn't really work in the case of multiplication, as other 
registers are affected, so I have provided a modified version here that works with the x86. The same goes for 
functions SameType and Promote. Function Convert is omitted entirely. **

void PopM(char T1,char T2) /* Pop Stack into Secondary Register */
{
    EmitLn("pop  bx");
    if(T2 == 'B')
    {   if(LvarTyp == 'D')
        {   EmitLn("pop  cx");
        }
        else if(T1 == 'W')
        {   Clear("cx");
            Clear("dx");
        }
        else if(T1 == 'D')
        {   EmitLn("pop  cx");
            Clear("dx");
        }
    }



    else if(T2 == 'W')
    {   if(LvarTyp != 'D')
        {   if(strchr("BW", T1))
            {   Clear("cx");
                Clear("dx");
            }
            else
            {   EmitLn("pop  cx");
                Clear("dx");
            }
        }
        else
        {   EmitLn("pop  cx");
        }
    }
    else
    {   if(LvarTyp == 'D')
        {   EmitLn("pop  cx");
        }
        else if(T1 != 'D')
        {   Clear("cx");
        }
        else
        {   EmitLn("pop  cx");
        }
    }
}
/*-------------------------------*/

char SameTypeM(char T1,char T2) /* Force both Arguments to Same Type */
{   char Typ;

    Typ = PromoteM(T1, T2);
    return Typ;
}
/*-------------------------------*/

char PromoteM(char T1,char T2) /* Promote the Size of a */
{   char Typ; /* Register Value */

    Typ = T2;
    if(T1 != T2)
    {   if(T2 == 'B')
        {   Typ = T1;
        }
        else if(T2 == 'W')
        {   Typ = 'W';
            if(T1 == 'D')
            {   Typ = 'D';
            }
        }
        else
        {   Typ = 'D';
        }
    }
    return Typ;
}



/*-------------------------------*/

As you can see, the routine starts off just like PopAdd.  The two arguments are forced to the same type.  ** The 
data themselves are promoted  to  words, but the routine remembers the type so as to assign the correct type to 
the result.  Finally, we call one of the two code generator routines, and then  assign the result type.  Not too 
complicated, really.

At this point, I suggest that you go ahead and test  the program. Try all combinations of operand sizes.

**Try: bbwwddB <cr> 
b=b*b <cr> b=w*b <cr> b=d*b <cr>
w=b*w <cr> w=w*w <cr> w=d*w <cr>
d=b*d <cr> d=w*d <cr> d=d*d <cr>
b=100*10 <cr> w=32000*2 <cr> d=66000*10 <cr>

DIVISION

The case of division is not nearly so  symmetric.    I  also have some bad news for you:

All  modern  16-bit   CPU's   support   integer   divide.     The manufacturer's data  sheet  will  describe  this 
operation  as a 32 x 16-bit divide, meaning that you can divide a 32-bit dividend by a 16-bit divisor.  Here's the 
bad news:

                     THEY'RE LYING TO YOU!!!

If you don't believe  it,  try  dividing  any large 32-bit number (meaning that it has non-zero bits  in  the upper 16 
bits) by the integer 1.  You are guaranteed to get an overflow exception.

The  problem is that the instruction  really  requires  that  the resulting quotient fit into a 16-bit result.   This 
won't happen UNLESS the divisor is  sufficiently  large.    When any number is divided by unity, the quotient will 
of course be the same  as the dividend, which had better fit into a 16-bit word.

Since  the  beginning  of  time  (well,  computers,  anyway), CPU architects have  provided  this  little  gotcha  in 
the division circuitry.  It provides a certain amount of  symmetry  in things, since it is sort of the inverse of the 
way a multiply works.  But since  unity  is  a perfectly valid (and rather common) number to use as a divisor, the 
division as implemented  in  hardware needs some help from us programmers.

The implications are as follows:

  o  The type of the quotient must always be the same as  that of the dividend.  It is independent of 
      the divisor.

  o  In spite of  the  fact  that  the  CPU  supports  a longword dividend,  the hardware-provided  
      instruction  can  only  be trusted  for  byte  and  word  dividends.      For  longword dividends, 
      we need another library routine that can return a long result.

This  looks  like  a job for  another  table,  to  summarize  the required actions:

    AX -->  row
    BX    / column



     |      
     V

  T1 -->  |                 |                 |                 |
  T2      |                 |                 |                 |
   |      |        B        |        W        |       D         |
   V      |                 |                 |                 |
-----------------------------------------------------------------
          |                 |                 |                 |
     B    | Convert AL to W |                 | Convert BL to W |
          |                 |                 |                 |
          | DIV             | DIV             | DIV             |
          | Result = B      | Result = B      | Result = W      |
          |                 |                 |                 |
-----------------------------------------------------------------
          |                 |                 |                 |
     W    | Convert AL to W |                 |                 |
          | DIV             | DIV             | DIV             |
          | Result = W      | Result = W      | Result = W      |
          |                 |                 |                 |
-----------------------------------------------------------------
          |                 |                 |                 |
     D    | Convert AL to D | Convert AX to D |                 |
          | Call DIV32      | Call DIV32      | Call DIV32      |
          | Result = D      | Result = D      | Result = D      |
          |                 |                 |                 |
-----------------------------------------------------------------

(You may wonder why it's necessary to do a 32-bit  division, when the  dividend is, say, only a byte in the first 
place.  Since the number  of bits in the result can only be as many as that in  the dividend,  why  bother?   The 
reason is that, if the divisor is a longword,  and  there  are any high bits set in it, the result of the division must 
be zero.  We might not get that if we only use the lower word of the divisor.)

The following code provides the correct function for PopDiv:**

**Add changes to Prototypes:
  void GenDiv(char); void GenLongDiv(void);
  char SameTypeD(char,char); char PromoteD(char,char);

char PopDiv(char T1,char T2) /* Generate Code to Divide Stack by */
{   char T, Typ; /* the Primary */

    PopM(T1,T2);
    T = SameTypeD(T1, T2);
    if(strchr("BW", T))
    {   if(T1 == 'D')
        {   T2 = T;
        }
        GenDiv(T2);
        Typ = T2;
    }
    else
    {   GenLongDiv();
        Typ = 'D';
    }
    return Typ;



}
/*-------------------------------*/

The two code generation procedures are:**

void GenDiv(char Size) /* Divide Primary by Top of Stack */
{
    if(Size == 'B')
    {   EmitLn("xchg ax, bx");
        EmitLn("div  bl");
    }
    else
    {   EmitLn("xchg ax, bx");
        EmitLn("xchg dx, cx");
        EmitLn("div  bx");
    }
}
/*-------------------------------*/

void GenLongDiv() /* Divide Top of Stack by Primary (Long) */
{
    EmitLn("xchg ax, bx");
    EmitLn("xchg dx, cx");
    EmitLn("call DIV32");
}
/*-------------------------------*/

char SameTypeD(char T1,char T2) /* Force both Arguments to Same Type */
{   char Typ;

    Typ = PromoteD(T1, T2);
    return Typ;
}
/*-------------------------------*/

**Note: as was the case with multiplication, division requires different versions of  SameType and Promote. **

char PromoteD(char T1,char T2) /* Promote the Size of a */
{   char Typ; /* Register Value */

    Typ = T2;
    if(T1 != T2)
    {   if(T2 == 'B')
        {   if(T1 == 'D')
            {   Typ = 'W';
            }
        }
        else if(T2 == 'W')
        {   Typ = 'W';
        }
        else
        {   Typ = 'D';
        }



    }
    return Typ;
}
/*-------------------------------*/

Note  that  we  assume that DIV32 leaves the (longword) result in DX:AX.

OK, install the new  procedures  for division.  At this point you should be able  to  generate  code  for  any  kind 
of arithmetic expression.  Give it a whirl!

**Try: bbwwddB <cr> 
b=b/b <cr> b=w/b <cr> b=d/b <cr>
w=b/w <cr> w=w/w <cr> w=d/w <cr>
d=b/d <cr> d=w/d <cr> d=d/d <cr>
b=100/10 <cr> w=32000/2 <cr> d=66000/10 <cr>

BEGINNING TO WIND DOWN
At  last, in this installment, we've learned  how  to  deal  with variables (and literals) of different types.  As you 
can  see, it hasn't been too tough.  In  fact,  in  some ways most of the code looks even more simple than it 
does in earlier  programs.    Only the  multiplication  and  division  operators  require  a  little thinking and 
planning.

The main concept that  made  things  easy  was that of converting procedures such as Expression into functions 
that return the type of the result.  Once this  was  done,  we were able to retain the same general structure of 
the compiler.

I won't pretend that  we've  covered  every  single aspect of the issue.  I conveniently  ignored  unsigned 
arithmetic.  From what we've  done, I think you can see that to include them adds no new challenges, just extra 
possibilities to test for.

I've also ignored the  logical  operators And, Or, etc.  It turns out  that  these are pretty easy to  handle.    All  the 
logical operators are  bitwise  operations,  so  they  are  symmetric and therefore work  in  the  same  fashion 
as  PopAdd.  There is one difference,  however:    if  it  is necessary to extend the  word length for a logical 
variable, the extension should be done as an UNSIGNED  number.      Floating   point   numbers,   again,   are 
straightforward  to  handle  ... just a few more procedures to be added to the run-time library, or perhaps 
instructions for a math chip.

Perhaps more importantly, I have also skirted the  issue  of type CHECKING,  as  opposed  to  conversion.   In 
other  words,  we've allowed for operations between variables of  all  combinations of types.  In general this will 
not be true ... certainly  you don't want to add an integer, for example, to a string.  Most languages also don't 
allow you to mix up character and integer variables.

Again, there are  really  no  new  issues to be addressed in this case.  We are already checking the types of the 
two  operands ... much  of this checking gets done  in  procedures  like  SameType. It's  pretty  straightforward 
to  include  a  call  to an  error handler, if the types of the two operands are incompatible.

In the general  case,  we  can  think of every single operator as being handled by  a  different procedure, 
depending upon the type of the two operands.  This is straightforward, though tedious, to implement simply by 
implementing  a  jump  table with the operand types  as indices.  In Pascal,  the  equivalent  operation  would 
involve nested Case statements.    Some  of the called procedures could then be simple  error  routines,  while 
others could effect whatever kind of conversion we need.  As more  types  are  added, the number of 
procedures goes up by a square-law rule, but that's still not an unreasonably large number of procedures.

What  we've  done  here is to collapse such a jump table into far fewer  procedures, simply by making use  of 



symmetry  and  other simplifying rules.

TO  COERCE  OR  NOT  TO  COERCE
In case you haven't gotten this message yet, it sure appears that TINY and KISS will  probably  _NOT_  be 
strongly typed languages, since I've allowed for  automatic  mixing  and conversion of just about any type. 
Which brings up the next issue:

                Is this really what we want to do?

The answer depends on what kind of language you want, and the way you'd like it to behave.  What we have not 
addressed is the issue of when to allow and when to deny the use of operations involving different  data  types. 
In other  words,  what  should  be  the SEMANTICS of our compiler?   Do we want automatic type conversion 
for all cases, for some cases, or not at all?

Let's pause here to think about this a bit more.   To  do  so, it will help to look at a bit of history.

FORTRAN  II supported only two simple  data  types:  Integer  and Real.    It  allowed implicit type conversion 
between  real  and integer types during assignment, but not within expressions.  All data items (including literal 
constants) on  the  right-hand side of an assignment statement had to be of the same type.  That made things 
pretty easy  ...  much  simpler  than what we've had to do here.

This  was  changed  in  FORTRAN   IV   to   support  "mixed-mode" arithmetic.  If an expression had any real 
data items in it, they were all converted to reals and the expression  itself  was real. To round out  the  picture, 
functions were provided to explicitly convert  from  one  type to the other, so that you could force an expression 
to end up as either type.

This  led to two things:  code that was easier to write, and code that was less efficient.  That's because sloppy 
programmers would write expressions with simple  constants  like  0  and 1 in them, which  the  compiler  would 
dutifully  compile  to   convert  at execution  time.  Still, the system  worked  pretty  well,  which would  tend  to 
indicate that implicit type conversion is a Good Thing.

C is also a weakly typed language, though it  supports  a  larger number  of types.  C won't complain if you try to 
add a character to an integer,  for  example.    Partly,  this is helped by the C convention of promoting every 
char  to integer when it is loaded, or  passed  through  a  parameter  list.    This  simplifies  the conversions quite 
a  bit.    In  fact, in subset C compilers that don't support long or float types,  we  end up back where we were in 
our earlier,  simple-minded  first try: every variable has the same representation, once loaded into  a  register. 
Makes life pretty easy!

The  ultimate  language  in  the  direction  of   automatic  type conversion is PL/I.   This  language  supports  a 
large number of data types, and you can mix them all  freely.    If  the implicit conversions of FORTRAN seemed 
good,  then  those  of  PL/I should have been Heaven, but it turned  out  to  be more like Hell!  The problem was 
that with so many data types, there had to be a large number  of  different conversions, AND  a  correspondingly 
large number of rules about how  mixed  operands  should  be converted. These rules became so  complex  that 
no  one could remember what they  were!  A lot of the errors in PL/I programs had to do  with unexpected and 
unwanted type  conversions.    Too  much of a Good Thing can be bad for you!

Pascal,  on  the  other hand, is a  language  which  is "strongly typed," which means that in general you can't 
mix types,  even if they differ only in _NAME_, and yet have the same base type! Niklaus Wirth made Pascal 
strongly typed to help keep programmers out of trouble, and  the  restrictions  have  indeed saved many a 
programmer from himself, because the compiler kept him from doing something dumb.  Better  to  find  the  bug 
in compilation rather than  the  debug  phase.    The same restrictions can also  cause frustration when you 
really  WANT  to mix types, and they tend to drive an ex-C-programmer up the wall.

Even so, Pascal does permit some implicit conversions.    You can assign  an integer to a real value.  You can 
also mix integer and real types in  expressions  of  type  Real.  The integers will be automatically coerced to real, 
just as in FORTRAN  (and  with the same hidden cost in run-time overhead).

You can't, however, convert the  other way, from real to integer, without applying an explicit  conversion 



function,  Trunc.   The theory here is that,  since  the numerical value of a real number is  necessarily  going  to 
be  changed  by  the conversion  (the fractional  part will be lost), you really  shouldn't  do  it  in "secret."

In the spirit of strong typing, Pascal will not allow you  to mix Char  and  Integer   variables,  without  applying 
the  explicit coercion functions Chr and Ord.

Turbo Pascal also includes the  types  Byte,  Word,  and LongInt. The first two are basically the same as 
unsigned  integers.    In Turbo,  these can be freely intermixed  with  variables  of  type Integer,  and  Turbo will 
automatically  handle  the  conversion. There are run-time  checks,  though, to keep you from overflowing or 
otherwise getting the wrong  answer. Note that you still can't mix Byte and Char types, even though they  are 
stored internally in the same representation.

The ultimate in a  strongly-typed  language  is Ada, which allows _NO_  implicit  type  conversions at all, and 
also will not allow mixed-mode  arithmetic.    Jean   Ichbiah's   position   is  that conversions cost  execution 
time, and you shouldn't be allowed to build in such cost in a hidden manner.  By forcing the programmer to 
explicitly  request  a  type  conversion,  you  make it  more apparent that there could be a cost involved.

I have been using another strongly-typed  language,  a delightful little  language  called  Whimsical,  by  John 
Spray.   Although Whimsical is  intended as a systems programming language, it also requires explicit 
conversion EVERY time.    There  are  NEVER any automatic conversions, even the ones supported by Pascal.

This approach does  have  certain advantages:  The compiler never has to guess what to do: the programmer 
always tells it precisely what  he  wants.  As a result, there tends to be  a  more  nearly one-to-one 
correspondence between  source code and compiled code, and John's compiler produces VERY tight code.

On the other hand, I sometimes find the  explicit  conversions to be a pain.  If I want, for example, to add one to 
a character, or AND it with a mask, there are a lot of conversions to make.  If I get  it  wrong,  the  only   error 
message  is  "Types  are  not compatible."  As it happens, John's particular  implementation of the language in 
his compiler doesn't tell you exactly WHICH types are not compatible ... it only tells you which LINE the  error is 
in.

I must admit that most of my errors with this compiler tend to be errors of this type, and  I've  spent  a  lot  of 
time  with the Whimsical compiler, trying to figure out just WHERE  in  the line I've offended it.   The only real 
way to fix the error is to keep trying things until something works.

So what should we do in TINY and KISS?  For the first one, I have the answer:  TINY  will  support only the 
types Char and Integer, and  we'll  use  the  C  trick  of  promoting Chars  to  Integers internally.  That means 
that  the  TINY  compiler will be _MUCH_ simpler  than  what  we've  already  done.    Type conversion  in 
expressions is sort of moot, since none will be required!   Since longwords will not be supported, we also won't 
need the MUL32 and DIV32 run-time routines, nor the logic to figure out when to call them.  I _LIKE_ it!

KISS, on the other hand, will support the type Long.

Should it support both signed and unsigned arithmetic?    For the sake of simplicity I'd rather not.    It  does add 
quite a bit to the  complexity  of  type conversions.  Even  Niklaus  Wirth  has eliminated  unsigned  (Cardinal) 
numbers from  his  new  language Oberon, with the argument that  32-bit  integers  should  be long enough for 
anybody, in either case.

But KISS is supposed to  be a systems programming language, which means that we should  be  able to do 
whatever operations that can be done in assembler.    Since the 68000 supports both flavors of integers, I guess 
KISS  should,  also.    We've seen that logical operations  need to be able to extend  integers  in  an  unsigned 
fashion, so the unsigned conversion  procedures  are  required in any case.

CONCLUSION
That wraps up our session on type conversions.  Sorry you  had to wait  so  long for it, but hope you feel that it 
was  worth  the wait.

In  the  next  few installments, we'll extend the simple types to include arrays and pointers, and we'll have a look 



at what  to do about  strings.    That should pretty well wrap up the mainstream part of the series.  After  that,  I'll  
give you the new versions of the TINY and KISS compilers,  and  then we'll start to look at optimization issues.

See you then.

INTRODUCTION
Can it really have been four years since I wrote installment fourteen of this series?  Is it really possible that six 
long years have passed since I began it?  Funny how time flies when you're having fun, isn't it?  

I won't spend a lot of time making excuses; only point out that things happen, and priorities change.  In the four 
years since installment fourteen, I've managed to get laid off, get divorced, have a nervous breakdown, begin a 
new career as a writer, begin another one as a consultant, move, work on two real-time systems, and raise 
fourteen baby birds, three pigeons, six possums, and a duck.  For awhile there, the parsing of source code was 
not high on my list of priorities.  Neither was writing stuff for free, instead of writing stuff for pay.  But I do try to 
be faithful, and I do recognize and feel my responsibility to you, the reader, to finish what I've started.  As the 
tortoise said in one of my  son's old stories, I may be slow, but I'm sure.  I'm  sure that  there are people out 
there anxious to see the last reel of this  film, and I intend to give it to them.  So, if you're one of those  who's 
been waiting, more or less patiently, to see how this thing  comes out, thanks for your patience.  I apologize for 
the delay.  Let's move on.

NEW  STARTS,  OLD  DIRECTIONS
Like many other things, programming languages and programming styles change with time.  In 1994, it seems a 
little anachronistic to be programming in Turbo Pascal, when the rest of the world seems  to have gone bananas 
over C++.  It also seems a little strange to be programming in a classical style when the rest of the world has 
switched to object-oriented methods.  Still, in spite of the four-year hiatus, it would be entirely too wrenching a 
change, at this point, to switch to, say, C++ with object-orientation .  Anyway, Pascal is still not only a powerful 
programming language (more than ever, in fact), but it's a wonderful medium for teaching.  C is a notoriously 
difficult language to read ... it's often been accused, along with Forth, of being a "write-only language."  When I 
program in C++, I find myself spending at least 50% of my time struggling with language syntax rather than with 
concepts.  A stray "&" or "*" can not only change the functioning of the program, but its correctness as well.  By 
contrast, Pascal code is usually quite transparent and easy to read, even if you don't know the language. What 
you see is almost always what you get, and we can concentrate on concepts rather than implementation details. 
I've said from the beginning that the purpose of this tutorial series was not to generate the world's fastest 
compiler, but to teach the fundamentals of compiler technology, while spending the least amount of time 
wrestling with language syntax or other aspects of software implementation. Finally, since a lot of what we do in 
this course amounts to software experimentation, it's important to have a compiler and associated environment 
that compiles quickly and with no fuss.  In my opinion, by far the most significant time measure in software 
development is the speed of the edit/compile/test cycle.  In this department, Turbo Pascal is king.  The 
compilation speed is blazing fast, and continues to get faster in every release (how do they keep doing that?). 
Despite vast improvements in C compilation speed over the years, even Borland's fastest C/C++ compiler is still 
no match for Turbo Pascal.  Further, the editor built into their IDE, the make facility, and even their superb smart 
linker, all complement each other to produce a wonderful environment for quick turnaround.  For all of these 
reasons, I intend to stick with Pascal for the duration of this series. We'll be using Turbo Pascal for Windows, 
one of the compilers provided Borland Pascal with Objects, version 7.0.  If you don't have this compiler, don't 
worry ... nothing we do here is going to count on your having the latest version. Using the Windows version 
helps me a lot, by allowing me to use the Clipboard to copy code from the compiler's editor into these 
documents.  It should also help you at least as much, copying the code in the other direction.  

I've thought long and hard about whether or not to introduce objects to our discussion.  I'm a big advocate of 
object-oriented methods for all uses, and such methods definitely have their place in compiler technology.  In 
fact, I've written papers on just this subject (Refs. 1-3).  But the architecture of a compiler which is based on 
object-oriented approaches is vastly different than that of the more classical compiler we've been building. 
Again, it would seem to be entirely too much to change these horses in mid-stream.  As I said, programming 
styles change.  Who knows, it may be another six years before we finish this thing, and if we keep changing the 
code every time programming style changes, we may NEVER finish.

So for now, at least, I've determined to continue the classical style in Pascal, though we might indeed discuss 



objects and object orientation as we go.  Likewise, the target machine will remain the Motorola 68000 family.  Of 
all the decisions to be made here, this one has been the easiest.  Though I know that many of you would like to 
see code for the 80x86, the 68000 has become, if anything, even more popular as a platform for embedded 
systems, and it's to that application that this whole effort began in the first place.  Compiling for the PC, MSDOS 
platform, we'd have to deal with all the issues of DOS system calls, DOS linker formats, the PC file system and 
hardware, and all those other complications of a DOS environment.  An embedded system, on the other hand, 
must run standalone, and it's for this kind of application, as an alternative to assembly language, that I've always 
imagined that a language like KISS would thrive. Anyway, who wants to deal with the 80x86 architecture if they 
don't have to?

The one feature of Turbo Pascal that I'm going to be making heavy use of is units.  In the past, we've had to 
make compromises between code size and complexity, and program functionality.  A lot of our work has been in 
the nature of computer experimentation, looking at only one aspect of compiler technology at a time. We did this 
to avoid to avoid having to carry around large programs, just to investigate simple concepts.  In the process, 
we've re-invented the wheel and re-programmed the same functions more times than I'd like to count.  Turbo 
units provide a wonderful way to get functionality and simplicity at the same time:  You write reusable code, and 
invoke it with a single line.  Your test program stays small, but it can do powerful things.

One feature of Turbo Pascal units is their initialization block.  As with an Ada package, any code in the main 
begin-end block of a unit gets executed as the program is initialized.  As you'll see later, this sometimes gives us 
neat simplifications in the code.  Our procedure Init, which has been with us since Installment 1, goes away 
entirely when we use units.  The various routines in the Cradle, another key features of our approach, will get 
distributed among the units.

The concept of units, of course, is no different than that of C modules.  However, in C (and C++), the interface 
between modules comes via preprocessor include statements and header files.  As someone who's had to read 
a lot of other people's C programs, I've always found this rather bewildering.  It always seems that whatever 
data structure you'd like to know about is in some other file.  Turbo units are simpler for the very reason that 
they're criticized by some:  The function interfaces and their implementation are included in the same file.  While 
this organization may create problems with code security, it also reduces the number of files by half, which isn't 
half bad.  Linking of the object files is also easy, because the Turbo compiler takes care of it without the need for 
make files or other mechanisms.

STARTING OVER?
Four years ago, in Installment 14, I promised you that our days of re-inventing the wheel, and recoding the same 
software over and over for each lesson, were over, and that from now on we'd stick to more complete programs 
that we would simply add new features to.  I still intend to keep that promise; that's one of the main purposes for 
using units.  However, because of the long time since Installment 14, it's natural to want to at least do some 
review, and anyhow, we're going to have to make rather sweeping changes in the code to make the transition to 
units.  Besides, frankly, after all this time I can't remember all the neat ideas I had in my head four years ago. 
The best way for me to recall them is to retrace some of the steps we took to arrive at Installment 14.  So I hope 
you'll be understanding and bear with me as we go back to our roots, in a sense, and rebuild the core of the 
software, distributing the routines among the various units, and bootstrapping ourselves back up to the point we 
were at lo, those many moons ago. As has always been the case, you're going to get  to see me make all the 
mistakes and execute changes of direction, in real time.  Please bear with me ... we'll start getting to the new 
stuff before you know it.

Since we're going to be using multiple modules in our new approach, we have to address the issue of file 
management.  If you've followed all the other sections of this tutorial, you know that, as our programs evolve, 
we're going to be replacing older, more simple-minded units with more capable ones. This brings us to an issue 
of version control. There will almost certainly be times when we will overlay a simple file (unit), but later wish we 
had the simple one again.  A case in point is embodied in our predilection for using single-character variable 
names, keywords, etc., to test concepts without getting bogged down in the details of a lexical scanner.  Thanks 
to the use of units, we will be doing much less of this in the future.  Still, I not only suspect, but am certain that 
we will need to save some older versions of files, for special purposes, even though they've been replaced by 
newer, more capable ones.

To deal with this problem, I suggest that you create different directories, with different versions of the units as 



needed.  If we do this properly, the code in each directory will remain self-consistent.  I've tentatively created 
four directories:  SINGLE (for single-character experimentation), MULTI (for, of course, multi-character 
versions), TINY, and KISS.

Enough said about philosophy and details.  Let's get on with the resurrection of the software.

THE INPUT UNIT
A key concept that we've used since Day 1 has been the idea of an input stream with one lookahead character. 
All the parsing routines examine this character, without changing it, to decide what they should do next. 
(Compare this approach with the C/Unix approach using getchar and unget, and I think you'll agree that our 
approach is simpler). We'll begin our hike into the future by translating this concept into our new, unit-based 
organization.  The first unit, appropriately called Input, is shown below:**
**[Note: where Turbo units are referenced, C modules and headers will be substituted.]

/* - Header Includes - */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* ------ Constants ------ */
#define BEEP 7

/* - Global Variables - */
  char Look;            /* look ahead character */

/* - Module Includes - */
#include "Input.c"
#include "Init.c"

void main() /* Main Program */
{
    Init();
}
/*-------------------------------*/

/* Module: Input.c */
/* - Function Prototypes - */
  void _GetChar(void);

void _GetChar() /* Read New Character From Input Stream */
{
    Look = getchar();
}
/*-------------------------------*/
{--------------------------------------------------------------}
{ Read New Character From Input Stream }
procedure GetChar;
begin

Read(Look);
end;



/* Module: Init.c */
/* - Function Prototypes - */
  void _GetChar(void);

void Init() /* Initialize */
{
    _GetChar();
}
/*-------------------------------*/

As you can see, there's nothing very profound, and certainly nothing complicated, about this unit, (**module) 
since it consists of only a single procedure.  But already, we can see how the use of units gives us advantages. 
Note the executable code in the initialization block.  This code "primes the pump" of the input stream for us, 
something we've always had to do before, by inserting the call to GetChar in line, or in procedure Init.  **[snip].  
As I predicted earlier, this mechanism is going to make our lives much simpler as we proceed.I consider it to be 
one of the most useful features of **, and I lean on it heavily. 

Copy this unit into your compiler's IDE, and compile it. To test the software, of course, we always need a main 
program.  I used the following, really complex test program, which we'll later evolve into the Main for our 
compiler:**

void main() /* Main Program */
{
    Init();
    printf("%c\n", Look);
}
/*-------------------------------*/

**[snip].
Go ahead and save the test program as **Main.c.  
I hasten to point out, as I've done before, that the function of unit Input is, and always has been, considered to 
be a dummy version of the real thing.  In a production version of a compiler, the input stream will, of course, 
come from a file rather than from the keyboard.  And it will almost certainly include line buffering, at the very 
least, and more likely, a rather large text buffer to support efficient disk I/O.  The nice part about the unit 
approach is that, as with objects, we can modify the code in the unit to be as simple or as sophisticated as we 
like. As long as the interface, as embodied in the public procedures and the lookahead character, don't change, 
the rest of the program is totally unaffected.  And since units are compiled, rather than merely included, the time 
required to link with them is virtually nil.  Again, the result is that we can get all the benefits of sophisticated 
implementations, without having to carry the code around as so much baggage.

In later installments, I intend to provide a full-blown IDE for the KISS compiler, using a true Windows application 
generated by Borland's OWL applications framework.  For now, though, we'll obey my #1 rule to live by:  Keep It 
Simple.

THE OUTPUT UNIT
Of course, every decent program should have output, and ours is no exception.  Our output routines included 
the Emit functions.  The code for the corresponding output unit is shown next:**

/* Module: Output.c */
/* Function Prototypes */
  void Emit(char *);
  void EmitLn(char *);



void EmitLn(char *a_string) /* Output a String with Tab and CRLF */
{
    Emit(a_string);
    printf("\n");
}
/*-------------------------------*/

void Emit(char *a_string) /* Output a String with Tab */
{
    printf("\t%s", a_string);
}
/*-------------------------------*/

Test this unit with the following main program:**

**Add this Include to Main.c:
#include "Output.c"

void main() /* Main Program */
{
    Init();
    printf("Main:\n");
    EmitLn("Hello, world!");
}
/*-------------------------------*/

**[snip].

THE ERROR UNIT
Our next set of routines are those that handle errors.  To refresh your memory, we take the approach, pioneered 
by Borland in Turbo Pascal, of halting on the first error.  Not only does this greatly simplify our code, by 
completely avoiding the sticky issue of error recovery, but it also makes much more sense, in my opinion, in an 
interactive environment.  I know this may be an extreme position, but I consider the practice of reporting all 
errors in a program to be an anachronism, a holdover from the days of batch processing.  It's time to scuttle the 
practice.  So there.

In our original Cradle, we had two error-handling procedures: Error, which didn't halt, and Abort, which did.  But I 
don't think we ever found a use for the procedure that didn't halt, so in the new, lean and mean unit Errors, 
shown next, procedure Error takes the place of Abort.**

/* Module: Error.c */
/* Function Prototypes */
  void Error(char *);
  void Expected(char *);

void Error(char *string)  /* Report an Error */
{
    printf("%c\n", BEEP);
    printf("Error: %s.\n", string);
    exit(1);
}
/*-------------------------------*/

void Expected(char *string)  /* Report What Was Expected */
{   char a_string[20];



    strcpy(a_string, string);
    strcat(a_string, " Expected");
    Error(a_string);
}
/*-------------------------------*/

As usual, here's a test program:**

**Add this Include to Main.c:
#include "Error.c"

void main() /* Main Program */
{
    Expected("Integer");
}
/*-------------------------------*/

**[snip].

SCANNING AND PARSING
The classical compiler architecture consists of separate modules for the lexical scanner, which supplies tokens 
in the language, and the parser, which tries to make sense of the tokens as syntax elements.  If you can still 
remember what we did in earlier installments, you'll recall that we didn't do things that way.  Because we're 
using a predictive parser, we can almost always tell what language element is coming next, just by examining 
the lookahead character.  Therefore, we found no need to prefetch tokens, as a scanner would do.

But, even though there is no functional procedure called "Scanner," it still makes sense to separate the scanning 
functions from the parsing functions.  So I've created two more units called, amazingly enough, Scanner and 
Parser.  The Scanner unit contains all of the routines known as recognizers.  Some of these, such as IsAlpha, 
are pure boolean routines which operate on the lookahead character only.  The other routines are those which 
collect tokens, such as identifiers and numeric constants. The Parser unit will contain all of the routines making 
up the recursive-descent parser.  The general rule should be that unit Parser contains all of the information that 
is language-specific; in other words, the syntax of the language should be wholly contained in Parser.  In an 
ideal world, this rule should be true to the extent that we can change the compiler to compile a different 
language, merely by replacing the single unit, Parser. 

In practice, things are almost never this pure.  There's always a small amount of "leakage" of syntax rules into 
the scanner as well.  For example, the rules concerning what makes up a legal identifier or constant may vary 
from language to language.  In some languages, the rules concerning comments permit them to be filtered by 
the scanner, while in others they do not. So in practice, both units are likely to end up having language-
dependent components, but the changes required to the scanner should be relatively trivial. 

Now, recall that we've used two versions of the scanner routines: One that handled only single-character tokens, 
which we used for a number of our tests, and another that provided full support for multi-character tokens.  Now 
that we have our software separated into units, I don't anticipate getting much use out of the single-character 
version, but it doesn't cost us much to provide for both.  I've created two versions of the Scanner unit.  The first  
one, called Scanner1, contains the single-digit version of the recognizers:**

/* Module: Scanner1.c */
/* Function Prototypes */
   int IsAddop(char);   int IsMulop(char);
  char GetName(void);  char GetNumber(void);



  void Match(char);

int IsAddop(char ch) /* Recognize an Addition Operator */
{   int rval;

    rval = 0;
    if(strchr("+-", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

int IsMulop(char ch) /* Recognize a Multiplication Operator */
{   int rval;

    rval = 0;
    if((ch == '*') || (ch == '/'))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

void Match(char x) /* Match One Character */
{   char a_string[10];

    if(Look == x)
    {   _GetChar();
    }
    else
    {    strcpy(a_string, "\" \"");
         a_string[1] = x;
         Expected(a_string);
    }
}
/*-------------------------------*/

char GetName() /* Get an Identifier */
{   char Name;

    if(! isalpha(Look))
    {   Expected("Name");
    }
    Name = toupper(Look);
    _GetChar();
    return Name;
}
/*-------------------------------*/

char GetNumber() /* Get a Number */
{   char Num;

    if(! isdigit(Look))



    {   Expected("Integer");
    }
    Num = Look;
    _GetChar();
    return Num;
}
/*-------------------------------*/

The following code fragment of the main program provides a good test of the scanner.  For brevity, I'll only 
include the executable code here; the rest remains the same.  **

#include "Scanner1.c"

void main() /* Main Program */
{   char value;

    Init();
    value = GetName();
    printf("%c",value);
    Match('=');
    value = GetNumber();
    printf("%c",value);
    Match('+');
    value = GetName();
    printf("%c\n",value);
}
/*-------------------------------*/

This code will recognize all sentences of the form:

x=0+y

where x and y can be any single-character variable names, and 0 any digit.  The code should reject all other 
sentences, and give a meaningful error message. If it did, you're in good shape and we can proceed.

THE SCANNER UNIT
The next, and by far the most important, version of the scanner is the one that handles the multi-character 
tokens that all real languages must have.  Only the two functions, GetName and GetNumber, change between 
the two units, but just to be sure there are no mistakes, I've reproduced the entire unit here.  This is unit 
Scanner:**

/* Module: Scanner.c */
/* Function Prototypes */
   int IsAddop(char);   int IsMulop(char);
  char *GetName(void);  char *GetNumber(void);
  void Match(char);

int IsAddop(char ch) /* Recognize an Addition Operator */
{   int rval;

    rval = 0;
    if(strchr("+-", ch))
    {   rval = 1;
    }



    return rval;
}
/*-------------------------------*/

int IsMulop(char ch) /* Recognize a Multiplication Operator */
{   int rval;

    rval = 0;
    if((ch == '*') || (ch == '/'))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/

void Match(char x) /* Match One Character */
{   char a_string[10];

    if(Look == x)
    {   _GetChar();
    }
    else
    {    strcpy(a_string, "\" \"");
         a_string[1] = x;
         Expected(a_string);
    }
}
/*-------------------------------*/

char *GetName() /* Get an Identifier */
{   static char Token[20];
    int ndx=0;

    if(! isalpha(Look))
    {    Expected("Name");
    }
    while(isalnum(Look))
    {   Token[ndx] = toupper(Look);
        ndx++;
       _GetChar();
    }
    Token[ndx] = '\0';
    return Token;
}
/*-------------------------------*/

char *GetNumber() /* Get a Number */
{   static char Value[10];
    int ndx=0;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   Value[ndx] = Look;



        ndx++;
        _GetChar();
    }
    Value[ndx] = '\0';
    return Value;
}
/*-------------------------------*/

The same test program will test this scanner, also. Simply change the "#includes" clause to use Scanner instead 
of Scanner1.  Now you should be able to type multi-character names and numbers.**

#include "Scanner.c"

void main() /* Main Program */
{   char value[20];

    Init();
    strcpy(value, GetName());
    printf("%s",value);
    Match('=');
    strcpy(value, GetNumber());
    printf("%s",value);
    Match('+');
    strcpy(value, GetName());
    printf("%s\n",value);
}
/*-------------------------------*/

**Now try: xyz=100+abc

DECISIONS, DECISIONS
In spite of the relative simplicity of both scanners, a lot of thought has gone into them, and a lot of decisions had 
to be made.  I'd like to share those thoughts with you now so you can make your own educated decision, 
appropriate for your application.  First, note that both versions of GetName translate the input characters to 
upper case.  Obviously, there was a design decision made here, and this is one of those cases where the 
language syntax splatters over into the scanner.  In the C language, the case of characters in identifiers is 
significant.  For such a language, we obviously can't map the characters to upper case.  The design I'm using 
assumes a language like Pascal, where the case of characters doesn't matter.  For such languages, it's easier 
to go ahead and map all identifiers to upper case in the scanner, so we don't have to worry later on when we're 
comparing strings for equality.

We could have even gone a step further, and map the characters to upper case right as they come in, in 
GetChar.  This approach works too, and I've used it in the past, but it's too confining. Specifically, it will also map 
characters that may be part of quoted strings, which is not a good idea.  So if you're going to map to upper case 
at all, GetName is the proper place to do it.

Note that the function GetNumber in this scanner returns a string, just as GetName does.  This is another one of 
those things I've oscillated about almost daily, and the last swing was all of ten minutes ago.  The alternative 
approach, and one I've used many times in past installments, returns an integer result.

Both approaches have their good points. Since we're fetching a number, the approach that immediately comes 
to mind is to return it as an integer.  But bear in mind that the eventual use of the number will be in a write 
statement that goes back to the outside world.  Someone -- either us or the code hidden inside the write 
statement -- is going to have to convert the number back to a string again.  Turbo Pascal includes such string 



conversion routines, but why use them if we don't have to?  Why convert a number from string to integer form, 
only to convert it right back again in the code generator, only a few statements later?

Furthermore, as you'll soon see, we're going to need a temporary storage spot for the value of the token we've 
fetched. If we treat the number in its string form, we can store the value of either a variable or a number in the 
same string.  Otherwise, we'll have to create a second, integer variable.

On the other hand, we'll find that carrying the number as a string virtually eliminates any chance of optimization 
later on.  As we get to the point where we are beginning to concern ourselves with code generation, we'll 
encounter cases in which we're doing arithmetic on constants.  For such cases, it's really foolish to generate 
code that performs the constant arithmetic at run time.  Far better to let the parser do the arithmetic at compile 
time, and merely code the result.  To do that, we'll wish we had the constants stored as integers rather than 
strings.

What finally swung me back over to the string approach was an aggressive application of the KISS test, plus 
reminding myself that we've studiously avoided issues of code efficiency.  One of the things that makes our 
simple-minded parsing work, without the complexities of a "real" compiler, is that we've said up front that we 
aren't concerned about code efficiency.  That gives us a lot of freedom to do things the easy way rather than the 
efficient one, and it's a freedom we must be careful not to abandon voluntarily, in spite of the urges for efficiency 
shouting in our ear.  In addition to being a big believer in the KISS philosophy, I'm also an advocate of "lazy 
programming," which in this context means, don't program anything until you need it.  As P.J. Plauger says, 
"Never put off until tomorrow what you can put off indefinitely."  Over the years, much code has been written to 
provide for eventualities that never happened.  I've learned that lesson myself, from bitter experience.  So the 
bottom line is:  We won't convert to an integer here because we don't need to.  It's as simple as that.

For those of you who still think we may need the integer version (and indeed we may), here it is:**

long GetNumber() /* Get a Number */
{   long Val=0;
    int x;

    if(! isdigit(Look))
    {   Expected("Integer");
    }
    while(isdigit(Look))
    {   x = Look - '0';
        Val = 10 * Val + x;
        _GetChar();
    }
    return Val;
}
/*-------------------------------*/

You might file this one away, as I intend to, for a rainy day.

PARSING
At this point, we have distributed all the routines that made up our Cradle into units that we can draw upon as 
we need them.  Obviously, they will evolve further as we continue the process of bootstrapping ourselves up 
again, but for the most part their content, and certainly the architecture that they imply, is defined.  What 
remains is to embody the language syntax into the parser unit.  We won't do much of that in this installment, but 
I do want to do a little, just to leave us with the good feeling that we still know what we're doing.  So before we 
go, let's generate just enough of a parser to process single factors in an expression.  In the process, we'll also, 
by necessity, find we have created a code generator unit, as well.

Remember the very first installment of this series?  We read an integer value, say n, and generated the code to 



load it into the AX register via an immediate move:**

MOV  AX, 100

Shortly afterwards, we repeated the process for a variable, **

MOV  AX,  ABC

and then for a factor that could be either constant or variable.  For old times sake, let's revisit that process. 
Define the following new unit:**

/* Module: Parser.c */
/* Function Prototypes */
  char Factor(void);

void Factor() /* Parse and Translate a Factor */
{   char value[10];

    strcpy(value, GetNumber());
    LoadConstant(value);
}
/*-------------------------------*/

As you can see, this unit calls a procedure, LoadConstant, which actually effects the output of the assembly-
language code.  The unit also uses a new unit, CodeGen.  This step represents the last major change in our 
architecture, from earlier installments: The removal of the machine-dependent code to a separate unit. If I have 
my way, there will not be a single line of code, outside of CodeGen, that betrays the fact that we're targeting the 
68000 CPU.  And this is one place I think that having my way is quite feasible.  

For those of you who wish I were using the 80x86 architecture (or any other one) instead of the 68000, here's 
your answer:  Merely replace CodeGen with one suitable for your CPU of choice.

So far, our code generator has only one procedure in it.  Here's the unit:**

/* Module: CodeGen.c */
/* Function Prototypes */
  void LoadConstant(char *);

void LoadConstant(char *N) /* Load the Primary Register with */
{   char a_string[20]; /* a Constant */

    strcpy(a_string, "MOV AX, ");
    strcat(a_string, N);
    EmitLn(a_string);
}
/*-------------------------------*/

Copy and compile this unit, and execute the following main program:**

#include "Parser.c"
#include "CodeGen.c"



void main() /* Main Program */
{
    Init();
    Factor();
}
/*-------------------------------*/

There it is, the generated code, just as we hoped it would be.

Now, I hope you can begin to see the advantage of the unit-based architecture of our new design.  Here we 
have a main program that's all of five lines long. That's all of the program we need to see, unless we choose to 
see more.  And yet, all those units are sitting there, patiently waiting to serve us.  We can have our cake and eat 
it too, in that we have simple and short code, but powerful allies.  What remains to be done is to flesh out the 
units to match the capabilities of earlier installments.  We'll do that in the next installment, but before I close, let's 
finish out the parsing of a factor, just to satisfy ourselves that we still know how.  The final version of CodeGen 
includes the new procedure, LoadVariable:**

/* Module: CodeGen.c */
/* Function Prototypes */
  void LoadConstant(char *);
  void LoadVariable(char *);

void LoadConstant(char *N) /* Load the Primary Register with */
{   char a_string[20]; /* a Constant */

    strcpy(a_string, "mov  ax, ");
    strcat(a_string, N);
    EmitLn(a_string);
}
/*-------------------------------*/

void LoadVariable(char *Name) /* Load a Variable to the Primary */
{   char a_string[30]; /* Register */

    strcpy(a_string, "mov  ax, ");
    strcat(a_string, Name);
    EmitLn(a_string);
}
/*-------------------------------*/

The parser unit itself doesn't change, but we have a more complex version of procedure Factor:**

/* Module: Parser.c */
/* Function Prototypes */
  char Factor(void);

void Factor() /* Parse and Translate a Factor */
{   char value[30];

    if(isdigit(Look))
    {   strcpy(value, GetNumber());
        LoadConstant(value);
    }



    else if(isalpha(Look))
    {   strcpy(value, GetName());
        LoadVariable(value);
    }
    else
    {   strcpy(value, "Unrecognized character  ");
        value[23] = Look;
        Error(value);
    }
}
/*-------------------------------*/

Now, without altering the main program, you should find that our program will process either a variable or a 
constant factor.  At this point, our architecture is almost complete; we have units to do all the dirty work, and 
enough code in the parser and code generator to demonstrate that everything works.  What remains is to flesh 
out the units we've defined, particularly the parser and code generator, to support the more complex syntax 
elements that make up a real language.  Since we've done this many times before in earlier installments, it 
shouldn't take long to get us back to where we were before the long hiatus.  We'll continue this process in 
Installment 16, coming soon.  See you then.
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INTRODUCTION
This series of tutorials promises to be perhaps one of the longest-running mini-series in history, rivalled only by 
the delay in Volume IV of Knuth.  Begun in 1988, the series ran into a four-year hiatus in 1990 when the "cares 
of this world," changes in priorities and interests, and the need to make a living seemed to stall it out after 
Installment 14.  Those of you with loads of patience were finally rewarded, in the spring of last year, with the 
long-awaited Installment 15.  In it, I began to try to steer the series back on track, and in the process, to make it  
easier to continue on to the goal, which is to provide you with not only enough understanding of the difficult 
subject of compiler theory, but also enough tools, in the form of canned subroutines and concepts, so that you 
would be able to continue on your own and become proficient enough to build your own parsers and translators. 
Because of that long hiatus, I thought it appropriate to go back and review the concepts we have covered so far, 
and to redo some of the software, as well.  In the past, we've never concerned ourselves much with the 
development of production-quality software tools ... after all, I was trying to teach (and learn) concepts, not 
production practice.  To do that, I tended to give you, not complete compilers or parsers, but only those snippets 
of code that illustrated the particular point we were considering at the moment. 
 
I still believe that's a good way to learn any subject; no one wants to have to make changes to 100,000 line 
programs just to try out a new idea.  But the idea of just dealing with code snippets, rather than complete 
programs, also has its drawbacks in that we often seemed to be writing the same code fragments over and over. 
Although repetition has been thoroughly proven to be a good way to learn new ideas, it's also true that one can 
have too much of a good thing.  By the time I had completed Installment 14 I seemed to have reached the limits 
of my abilities to juggle multiple files and multiple versions of the same software functions.  Who knows, perhaps 
that's one reason I seemed to have run out of gas at that point. 
**[snip]. 
 
Since, by now, most of you are programming in either C or C++, I know what you're thinking:  Borland, with their 
Turbo Pascal (TP), certainly didn't invent the concept of separately compilable modules.  And of course you're 



right.  But if you've not used TP lately, or ever, you may not realize just how painless the whole process is. 
Even in C or C++, you still have to build a make file, either manually or by telling the compiler how to do so.  You 
must also list, using "extern" statements or header files, the functions you want to import.  In TP, you don't even 
have to do that.  You need only name the units you wish to use, and all of their procedures automatically 
become available.   
 
 
It's not my intention to get into a language-war debate here, so I won't pursue the subject any further.  Even I no 
longer use Pascal on my job ... I use C at work and C++ for my articles in Embedded Systems Programming 
and other magazines.  Believe me, when I set out to resurrect this series, I thought long and hard about 
switching both languages and target systems to the ones that we're all using these days, C/C++ and PC 
architecture, and possibly object-oriented methods as well.  In the end, I felt it would cause more confusion than 
the hiatus itself has. And after all, Pascal still remains one of the best possible languages for teaching, not to 
mention production programming.  Finally, TP still compiles at the speed of light, much faster than competing 
C/C++ compilers. And Borland's smart linker, used in TP but not in their C++ products, is second to none. 
Aside from being much faster than Microsoft-compatible linkers, the Borland smart linker will cull unused 
procedures and data items, even to the extent of trimming them out of defined objects if they're not needed.  For 
one of the few times in our lives, we don't have to compromise between completeness and efficiency.  When 
we're writing a TP unit, we can make it as complete as we like, including any member functions and data items 
we may think we will ever need, confident that doing so will not create unwanted bloat in the compiled and linked 
executable. 
**[snip]. 
 
Using this principle, in Installment 15 I set out to minimize our tendency to re-invent the wheel by organizing  our 
code into separate Turbo Pascal units, each containing different parts of the compiler.  We ended up with the 
following units: 
 
* Input 
* Output 
* Errors 
* Scanner 
* Parser 
* CodeGen 
 
Each of these units serves a different function, and encapsulates specific areas of functionality.  The Input and 
Output units, as their name implies, provide character stream I/O and the all-important lookahead character 
upon which our predictive parser is based.  The Errors unit, of course, provides standard error handling.  The 
Scanner unit contains all of our boolean functions such as IsAlpha, and the routines GetName and GetNumber, 
which process multi-character tokens. 
 
The two units we'll be working with the most, and the ones that most represent the personality of our compiler, 
are Parser and CodeGen.  Theoretically, the Parser unit should encapsulate all aspects of the compiler that 
depend on the syntax of the compiled language (though, as we saw last time, a small amount of this syntax 
spills over into Scanner).  Similarly, the code generator unit, CodeGen, contains all of the code dependent upon 
the target machine.  In this installment, we'll be continuing with the development of the functions in these two all-
important units. 
 
 

JUST LIKE CLASSICAL? 
Before we proceed, however, I think I should clarify the relationship  between, and the functionality of these 
units.  Those of you who are familiar with compiler theory as taught in universities will, of course, recognize the 
names, Scanner, Parser, and CodeGen, all of which are components of a classical compiler implementation. 
You may be thinking that I've abandoned my commitment to the KISS philosophy, and drifted towards a more 
conventional architecture than we once had.  A closer look, however, should convince you that, while the names 
are similar, the functionalities are quite different. 
 
Together, the scanner and parser of a classical implementation comprise the so-called "front end," and the code 



generator, the back end.  The front end routines process the language-dependent, syntax-related aspects of the 
source language, while the code generator, or back end, deals with the target machine-dependent parts of the 
problem.  In classical compilers, the two ends communicate via a file of instructions written in an intermediate 
language (IL). 
 
Typically, a classical scanner is a single procedure, operating as a co-procedure with the parser.  It "tokenizes" 
the source file, reading it character by character, recognizing language elements, translating them into tokens, 
and passing them along to the parser.  You can think of the parser as an abstract machine, executing "op 
codes," which are the tokens.  Similarly, the parser generates op codes of a second abstract machine, which 
mechanizes the IL.  Typically, the IL file is written to disk by the parser, and read back again by the code 
generator. 
 
Our organization is quite different.  We have no lexical scanner, in the classical sense;  our unit Scanner, though 
it has a similar name, is not a single procedure or co-procedure, but merely a set of separate subroutines which 
are called by the parser as needed.  
 
Similarly, the classical code generator, the back end,  is a translator in its own right, reading an IL "source" file, 
and emitting an object file.  Our code generator doesn't work that way.  In our compiler, there IS no intermediate 
language; every construct in the source language syntax is converted into assembly language as it is recognized 
by the parser.  Like Scanner, the unit CodeGen consists of individual procedures which are called by the parser 
as needed. 
 
This "code 'em as you find 'em" philosophy may not produce the world's most efficient code -- for example, we 
haven't provided (yet!) a convenient place for an optimizer to work its magic -- but it sure does simplify the 
compiler, doesn't it? 
 
And that observation prompts me to reflect, once again, on how we have managed to reduce a compiler's 
functions to such comparatively simple terms.  I've waxed eloquent on this subject in past installments, so I 
won't belabor the point too much here.  However, because of the time that's elapsed since those last soliloquies, 
I hope you'll grant me just a little time to remind myself, as well as you, how we got here.  We got here by 
applying several principles that writers of commercial compilers seldom have the luxury of using.  These are: 
 
o The KISS philosophy -- Never do things the hard way without a reason 
 
o Lazy coding -- Never put off until tomorrow what you can put of forever (with credits to P.J. 
            Plauger) 
 
o Skepticism -- Stubborn refusal to do something just because that's the way it's always  
            been done. 
 
o Acceptance of inefficient code 
 
o Rejection of arbitrary constraints 
 
As I've reviewed the history of compiler construction, I've learned that virtually every production compiler in 
history has suffered from pre-imposed conditions that strongly influenced its design. The original FORTRAN 
compiler of John Backus, et al, had to compete with assembly language, and therefore was constrained to 
produce extremely efficient code.  The IBM compilers for the minicomputers of the 70's had to run in the very 
small RAM memories then available -- as small as 4k.  The early Ada compiler had to compile itself.  Per Brinch 
Hansen decreed that his Pascal compiler developed for the IBM PC must execute in a 64k machine.  Compilers 
developed in Computer Science courses had to compile the widest variety of languages, and therefore required 
LALR parsers. 
 
In each of these cases, these preconceived constraints literally dominated the design of the compiler.  
 
A good example is Brinch Hansen's compiler, described in his excellent book, "Brinch Hansen on Pascal 
Compilers" (highly recommended).  Though his compiler is one of the most clear and un-obscure compiler 
implementations I've seen, that one decision, to compile large files in a small RAM, totally drives the design, and 
he ends up with not just one, but many intermediate files, together with the drivers to write and read them. 
 



In time, the architectures resulting from such decisions have found their way into computer science lore as 
articles of faith. In this one man's opinion, it's time that they were re-examined critically.  The conditions, 
environments, and requirements that led to classical architectures are not the same as the ones we have today. 
There's no reason to believe the solutions should be the same, either. 
 
In this tutorial, we've followed the leads of such pioneers in the world of small compilers for Pcs as Leor Zolman, 
Ron Cain, and James Hendrix, who didn't know enough compiler theory to know that they "couldn't do it that 
way."  We have resolutely refused to accept arbitrary constraints, but rather have done whatever was easy.  As 
a result, we have evolved an architecture that, while quite different from the classical one, gets the job done in 
very simple and straightforward fashion. 
 
I'll end this philosophizing with an observation re the notion of an intermediate language.  While I've noted before 
that we don't have one in our compiler, that's not exactly true; we _DO_ have one, or at least are evolving one, 
in the sense that we are defining code generation functions for the parser to call.  In essence, every call to a 
code generation procedure can be thought of as an instruction in an intermediate language.  Should we ever find 
it necessary to formalize an intermediate language, this is the way we would do it:  emit codes from the parser, 
each representing a call to one of the code generator procedures, and then process each code by calling those 
procedures in a separate pass, implemented in a back end. Frankly, I don't see that we'll ever find a need for 
this approach, but there is the connection, if you choose to follow it, between the classical and the current 
approaches. 
 

FLESHING OUT THE PARSER 
Though I promised you, somewhere along about Installment 14, that we'd never again write every single 
function from scratch, I ended up starting to do just that in Installment 15.  One reason: that long hiatus between 
the two installments made a review seem eminently justified ... even imperative, both for you and for me. More 
importantly, the decision to collect the procedures into modules (units), forced us to look at each one yet again, 
whether we wanted to or not.  And, finally and frankly, I've had some new ideas in the last four years that 
warranted a fresh look at some old friends.  When I first began this series, I was frankly amazed, and pleased, 
to learn just how simple parsing routines can be made.  But this last time around, I've surprised myself yet 
again, and been able to make them just that last little bit simpler, yet. 
 
Still, because of this total rewrite of the parsing modules, I was only able to include so much in the last 
installment.  Because of this, our hero, the parser, when last seen, was a shadow of his former self,  consisting 
of only enough code to parse and process a factor consisting of either a variable or a constant.  The main effort 
of this current installment will be to help flesh out the parser to its former glory.  In the process, I hope you'll bear 
with me if we sometimes cover ground we've long since been over and dealt with. 
 
First, let's take care of a problem that we've addressed before: Our current version of procedure Factor, as we 
left it in Installment 15,  can't handle negative arguments.  To fix that, we'll introduce the procedure 
SignedFactor: **
 
**Add this to module Parser.c:
  void SignedFactor(void);

void SignedFactor() /* Parse and Translate a Factor with Optional */
{   char Sign; /* Sign */

    Sign = Look; 
    if(IsAddop(Look))
    {   _GetChar();
    }
    Factor();
    if(Sign == '-')
    {   Negate();
    }
}
/*-------------------------------*/ 



 
 
Note that this procedure calls a new code generation routine, Negate: **
 
**Add this to module CodeGen.c:
  void Negate(void); 

void Negate() /* Negate Primary */
{
    EmitLn("neg  ax");
}
/*-------------------------------*/
 
 
(Here, and elsewhere in this series, I'm only going to show you the new routines. I'm counting on you to put 
them into the proper unit, which you should normally have no trouble identifying.  Don't forget to add the 
procedure's prototype to the interface section of the unit.) 
 
In the main program, simply change the procedure called from Factor to SignedFactor, and give the code a test. 
 
Yes, I know, the code isn't very efficient.  If we input a number, -3, the generated code is: **
 

MOV  AX, 3
NEG  AX

 
which is really, really dumb.  We can do better, of course, by simply pre-appending a minus sign to the string 
passed to LoadConstant, but it adds a few lines of code to SignedFactor, and I'm applying the KISS philosophy 
very aggressively here. What's more,  to tell the truth, I think I'm subconsciously enjoying generating "really, 
really dumb" code, so I can have the pleasure of watching it get dramatically better when we get into 
optimization methods. 
 
Most of you have never heard of John Spray, so allow me to introduce him to you here.  John's from New 
Zealand, and used to teach computer science at one of its universities.  John wrote a compiler for the Motorola 
6809, based on a delightful, Pascal-like language of his own design called "Whimsical."  He later ported the 
compiler to the 68000, and for awhile it was the only compiler I had for my homebrewed 68000 system.   
 
For the record, one of my standard tests for any new compiler is to see how the compiler deals with a null 
program like: 
 

program main; 
begin 
end. 

 
My test is to measure the time required to compile and link, and the size of the object file generated.  The 
undisputed _LOSER_ in the test is the DEC C compiler for the VAX, which took 60 seconds to compile, on a 
VAX 11/780, and generated a 50k object file.  John's compiler is the undisputed, once, future, and forever king 
in the code size department.  Given the null program, Whimsical generates precisely two bytes of code, 
implementing the one instruction, 
 

RET 
 
By setting a compiler option to generate an include file rather than a standalone program, John can even cut this 
size, from two bytes to zero!  Sort of hard to beat a null object file, wouldn't you say? 
 
Needless to say, I consider John to be something of an expert on code optimization, and I like what he has to 
say: "The best way to optimize is not to have to optimize at all, but to produce good code in the first place." 
Words to live by.  When we get started on optimization, we'll follow John's advice, and our first step will not be to 
add a peephole optimizer or other after-the-fact device, but to improve the quality of the code emitted before 
optimization.  So make a note of SignedFactor as a good first candidate for attention, and for now we'll leave it 



be. 

 

TERMS AND EXPRESSIONS 
I'm sure you know what's coming next: We must, yet again, create the rest of the procedures that implement the 
recursive-descent parsing of an expression.  We all know that the hierarchy of procedures for arithmetic 
expressions is: 
 

expression 
term 

factor 
 
However, for now let's continue to do things one step at a time, and consider only expressions with additive 
terms in them.  The code to implement expressions, including a possibly signed first term, is shown next: **

**Add these to module Parser.c:
  void Expression(void);
  void Add(void);
  void Subtract(void);

 
void Expression() /* Parse and Translate an Expression */
{
    SignedFactor();
    while(IsAddop(Look))
    {   switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/ 
 
 
This procedure calls two other procedures to process the operations: **
 

void Add() /* Parse and Translate an Addition Operation */
{
    Match('+'); 
    Push();
    Factor();
    PopAdd();
}
/*-------------------------------*/ 
 

void Subtract() /* Parse and Translate a Subtraction Operation */
{
    Match('-'); 
    Push();
    Factor();



    PopSub();
}
/*-------------------------------*/ 
 
 
The three procedures Push, PopAdd, and PopSub are new code generation routines.  As the name implies, 
procedure Push generates code to push the primary register (**AX, in our **x86 implementation) to the stack. 
PopAdd and PopSub pop the top of the stack again, and add it to, or subtract it from, the primary register.  The 
code is shown next: **
 
**Add these to module CodeGen.c: 
  void Push(void);
  void PopAdd(void);
  void PopSub(void);

void Push() /* Push Primary to Stack */
{
    EmitLn("push  ax"); 
}
/*-------------------------------*/
 

void PopAdd() /* Add TOS to Primary */
{
    EmitLn("mov  si, sp");
    EmitLn("add [si], ax");
    EmitLn("pop  ax"); 
}
/*-------------------------------*/
 

void PopSub() /* Subtract TOS from Primary */
{
    EmitLn("mov  si, sp");
    EmitLn("sub [si], ax");
    EmitLn("pop  ax"); 
}
/*-------------------------------*/
 
 
Add these routines to Parser and CodeGen, and change the main program to call Expression. **

void main() /* Main Program */
{
    Init();
    Expression();
}
/*-------------------------------*/

Voila! 
 
The next step, of course, is to add the capability for dealing with multiplicative terms.  To that end, we'll add a 
procedure Term, and code generation procedures PopMul and PopDiv.  These code generation procedures are 
shown next: **
 
**Add these to module CodeGen.c: 
  void PopMul(void);
  void PopDiv(void);



void PopMul() /* Multiply TOS by Primary */
{
    EmitLn("pop  bx"); 
    EmitLn("xchg ax, bx");
    EmitLn("mul  bx");
}
/*-------------------------------*/ 
 

void PopDiv() /* Divide Primary by TOS */
{
    EmitLn("pop  bx"); 
    EmitLn("xchg ax, bx");
    EmitLn("div  bx");
}
/*-------------------------------*/
 
 
**[snip]. Note the use of signed multiply and divide operations.  This follows an implied, but unstated, 
assumption, that all our variables will be signed 16-bit integers. This decision will come back to haunt us later, 
when we start looking at multiple data types, type conversions, etc. 
 
Our procedure Term is virtually a clone of Expression, and looks like this: **

**Add this to module Parser.c:
  void Term(void);
 
void Term() /* Parse and Translate a Term */
{
    Factor();
    while(IsMulop(Look))
    {   switch(Look)
        {   case '*':
                Multiply();
                break;
            case '/':
                Divide();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/ 
 
 
Our next step is to change some names.  SignedFactor now becomes SignedTerm, and the calls to Factor in 
Expression, Add, Subtract and SignedTerm get changed to call Term: **
 
 
void SignedTerm() /* Parse and Translate a Factor with Optional Sign */
{   char Sign;

    Sign = Look; 
    if(IsAddop(Look))
    {   _GetChar();
    }



    Term();
    if(Sign == '-')
    {   Negate();
    }
}
/*-------------------------------*/

... 

void Expression() /* Parse and Translate an Expression */
{
    SignedTerm();
    while(IsAddop(Look))
    {   switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/
 
 
If memory serves me correctly, we once had BOTH a procedure SignedFactor and a procedure SignedTerm. I 
had reasons for doing that at the time ... they had to do with the handling of Boolean algebra and, in particular, 
the Boolean "not" function.  But certainly, for arithmetic operations, that duplication isn't necessary.  In an 
expression like: 
 

-x*y 
 
it's very apparent that the sign goes with the whole TERM, x*y, and not just the factor x, and that's the way 
Expression is coded.   
 
Test this new code by executing Main.  It still calls Expression, so you should now be able to deal with 
expressions containing any of the four arithmetic operators. 
**Note: as supplied, the above code will not compile, it's missing functions Multiply and Divide, so I have 
furnished what should work, here: **

**Add this to module Parser.c:
  void Multiply(void);
  void Divide(void);

void Multiply() /* Parse and Translate a Multiply Operation */
{
    Match('*'); 
    Push();
    Term();
    PopMul();
}
/*-------------------------------*/

void Divide() /* Parse and Translate a Divide Operation */
{



    Match('/'); 
    Push();
    Term();
    PopDiv();
}
/*-------------------------------*/

 
Our last bit of business, as far as expressions goes, is to modify procedure Factor to allow for parenthetical 
expressions.  By using a recursive call to Expression, we can reduce the needed code to virtually nothing.  Five 
lines added to Factor do the job: **
 

void Factor() /* Parse and Translate a Factor */
{   char value[30];

    if(Look =='(')
    {   Match('('); 
        Expression();
        Match(')'); 
    }
    else if(isdigit(Look))
    {   strcpy(value, GetNumber());
        LoadConstant(value);
    }
    else if(isalpha(Look))
    {   strcpy(value, GetName());
        LoadVariable(value);
    }
    else
    {   strcpy(value, "Unrecognized character  ");
        value[23] = Look;
        Error(value);
    }
}
/*-------------------------------*/ 
 
 
At this point, your "compiler" should be able to handle any legal expression you can throw at it.  Better yet, it 
should reject all illegal ones! 
 

ASSIGNMENTS 
As long as we're this close, we might as well create the code to deal with an assignment statement.  This code 
needs only to remember the name of the target variable where we are to store the result of an expression, call 
Expression, then store the number.  The procedure is shown next: **
 
**Add this to module Parser.c:
  void Assignment(void); 

void Assignment() /* Parse and Translate an Assignment Statement */
{   char Name[20];

    strcpy(Name, GetName());
    Match('='); 
    Expression();
    StoreVariable(Name); 



}
/*-------------------------------*/
 

The assignment calls for yet another code generation routine: **
 
**Add this to module CodeGen.c:
  void StoreVariable(char *);

void StoreVariable(char *Name) /* Store the Primary Register to a */
{   char a_string[30]; /* Variable */

    strcpy(a_string, "lea  di, ");
    strcat(a_string, Name);
    EmitLn(a_string); 
    EmitLn("mov [di], ax"); 
}
/*-------------------------------*/
 
 
Now, change the call in Main to call Assignment, and you should see a full assignment statement being 
processed correctly.  

void main() /* Main Program */
{
    Init();
    Assignment();
}
/*-------------------------------*/

Pretty neat, eh?  And painless, too. 
 
In the past, we've always tried to show BNF relations to define the syntax we're developing. I haven't done that 
here, and it's high time I did.  Here's the BNF: 
 
 
<factor>      = <variable> | <constant> | '(' <expression> ')'  
<signed_term> = [<addop>] <term> 
<term>        = <factor> (<mulop> <factor>)*  
<expression>  = <signed_term> (<addop> <term>)* 
<assignment>  = <variable> '=' <expression> 

 
BOOLEANS 
The next step, as we've learned several times before, is to add Boolean algebra.  In the past, this step has at 
least doubled the amount of code we've had to write.  As I've gone over this step in my mind, I've found myself  
diverging more and more from what we did in previous installments.  To refresh your memory, I noted that 
Pascal treats the Boolean operators pretty much identically to the way it treats arithmetic ones.  A Boolean "and" 
has the same precedence level as multiplication, and the "or" as addition.  C, on the other hand, sets them at 
different precedence levels, and all told has a whopping 17 levels.  In our earlier work, I chose something in 
between, with seven levels.  As a result, we ended up with things called Boolean expressions, paralleling in 
most details the arithmetic expressions, but at a different precedence level.  All of this, as it turned out, came 
about because I didn't like having to put parentheses around the Boolean expressions in statements like: 
 

     IF (c >= 'A') and (c <= 'Z') then ... 
 
In retrospect, that seems a pretty petty reason to add many layers of complexity to the parser.  Perhaps more to 



the point, I'm not sure I was even able to avoid the parens.   
 
For kicks, let's start anew, taking a more Pascal-ish approach, and just treat the Boolean operators at the same 
precedence level as the arithmetic ones. We'll see where it leads us.  If it seems to be down the garden path, we 
can always backtrack to the earlier approach. 
 
For starters, we'll add the "addition-level" operators to Expression. That's easily done; first, modify the function 
IsAddop in unit Scanner to include two extra operators: '|' for "or," and '~' for "exclusive or": **
 

int IsAddop(char ch) /* Recognize an Addop */
{   int rval;

    rval = 0;
    if(strchr("+-|~", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/
 
 
Next, we must include the parsing of the operators in procedure Expression: **
 

void Expression() /* Parse and Translate an Expression */
{
    SignedTerm();
    while(IsAddop(Look))
    {   switch(Look)
        {   case '+':
                Add();
                break;
            case '-':
                Subtract();
                break;
            case '|':
                _Or();
                break;
            case '~':
                _Xor();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/ 
 
 
Next, the procedures _Or and _Xor: **
 
**Add to module Parser.c:
  void _Or(void);
  void _Xor(void);

 
void _Or() /* Parse and Translate an Or Operation */
{



    Match('|'); 
    Push();
    Term();
    PopOr();
}
/*-------------------------------*/
 

void _Xor() /* Parse and Translate an Xor Operation */
{
    Match('~'); 
    Push();
    Term();
    PopXor();
}
/*-------------------------------*/
 

And, finally, the new code generator procedures: **
 
**Add to module CodeGen.c: 
  void PopOr(void);
  void PopXor(void);

void PopOr() /* Or TOS with Primary */
{
    EmitLn("pop  bx"); 
    EmitLn("xchg ax, bx");
    EmitLn("or   ax, bx");
}
/*-------------------------------*/

void PopXor() /* Exclusive-Or TOS with Primary */
{
    EmitLn("pop  bx"); 
    EmitLn("xchg ax, bx");
    EmitLn("xor  ax, bx");
}
/*-------------------------------*/ 
 

Now, let's test the translator (you might want to change the call in Main back to a call to Expression, just to avoid 
having to type "x=" for an assignment every time). 
 
So far, so good.  The parser nicely handles expressions of the form: 
 

x|y~z 
 
Unfortunately, it also does nothing to protect us from mixing Boolean and arithmetic algebra.  It will merrily 
generate code for: 
 

(a+b)*(c~d) 
 
We've talked about this a bit, in the past.  In general the rules for what operations are legal or not cannot be 
enforced by the parser itself, because they are not part of the syntax of the language, but rather its semantics. 
A compiler that doesn't allow mixed-mode expressions of this sort must recognize that c and d are Boolean 
variables, rather than numeric ones, and balk at multiplying them in the next step. But this "policing" can't be 



done by the parser; it must be handled somewhere between the parser and the code generator. We aren't in a 
position to enforce such rules yet, because we haven't got either a way of declaring types, or a symbol table to 
store the types in.  So, for what we've got to work with at the moment, the parser is doing precisely what it's 
supposed to do. 
 
Anyway, are we sure that we DON'T want to allow mixed-type operations?  We made the decision some time 
ago (or, at least, I did) to adopt the value 0000 as a Boolean "false," and -1, or FFFFh, as a Boolean "true."  The 
nice part about this choice is that bitwise operations work exactly the same way as logical ones.  In other words, 
when we do an operation on one bit of a logical variable, we do it on all of them.  This means that we don't need 
to distinguish between logical and bitwise operations, as is done in C with the operators & and &&, and | and ||.  
Reducing the number of operators by half certainly doesn't seem all bad. 
 
From the point of view of the data in storage, of course, the computer and compiler couldn't care less whether 
the number FFFFh represents the logical TRUE, or the numeric -1.  Should we?  I sort of think not.  I can think 
of many examples (though they might be frowned upon as "tricky" code) where the ability to mix the types might 
come in handy.  Example, the Dirac delta function, which could be coded in one simple line: 
 

-(x=0) 
 
or the absolute value function (DEFINITELY tricky code!): 
 

x*(1+2*(x<0)) 
 
Please note, I'm not advocating coding like this as a way of life.  I'd almost certainly write these functions in 
more readable form,  using IFs, just to keep from confusing later maintainers.  Still, a moral question arises:  Do 
we have the right to ENFORCE our ideas of good coding practice on the programmer, but writing the language 
so he can't do anything else?  That's what Nicklaus Wirth did, in many places in Pascal, and Pascal has been 
criticized for it -- for not being as "forgiving" as C.   
 
An interesting parallel presents itself in the example of the Motorola 68000 design.  Though Motorola brags 
loudly about the orthogonality of their instruction set, the fact is that it's far from orthogonal.  For example, you 
can read a variable from its address:
 

MOVE X,D0 (where X is the name of a variable) 
 
but you can't write in the same way.  To write, you must load an address register with the address of X.  The 
same is true for PC-relative addressing:
 

MOVE X(PC),DO (legal) 
MOVE D0,X(PC) (illegal) 

 
When you begin asking how such non-orthogonal behavior came about, you find that someone in Motorola had 
some theories about how software should be written.  Specifically, in this case, they decided that self-modifying 
code, which you can implement using PC-relative writes, is a Bad Thing.  Therefore, they designed the 
processor to prohibit it.  Unfortunately, in the process they also prohibited _ALL_ writes of the forms shown 
above, however benign.  Note that this was not something done by default.  Extra design work had to be done, 
and extra gates added, to destroy the natural orthogonality of the instruction set. 
 
One of the lessons I've learned from life: If you have two choices, and can't decide which one to take, 
sometimes the best thing to do is nothing.  Why add extra gates to a processor to enforce some stranger's idea 
of good programming practice?  Leave the instructions in, and let the programmers debate what good 
programming practice is.  Similarly, why should we add extra code to our parser, to test for and prevent 
conditions that the user might prefer to do, anyway?  I'd rather leave the compiler simple, and let the software 
experts debate whether the practices should be used or not. 
 
All of which serves as rationalization for my decision as to how to prevent mixed-type arithmetic:  I won't.  For a 
language intended for systems programming, the fewer rules, the better. If you don't agree, and want to test for 
such conditions, we can do it once we have a symbol table. 
 



BOOLEAN "AND" 
With that bit of philosophy out of the way, we can press on to the "and" operator, which goes into procedure 
Term. By now, you can probably do this without me, but here's the code, anyway: 
 
In Scanner, **

int IsMulop(char ch) /* Recognize a Mulop */
{   int rval;

    rval = 0;
    if(strchr("*&/", ch))
    {   rval = 1;
    }
    return rval;
}
/*-------------------------------*/ 
 

In Parser, **

 
void Term() /* Parse and Translate a Term */
{
    Factor();
    while(IsMulop(Look))
    {   switch(Look)
        {   case '*':
                Multiply();
                break;
            case '/':
                Divide();
                break;
            case '&':
                _And();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/

  void _And(void);

void _And() /* Parse and Translate a Boolean And Operation */
{
    Match('&'); 
    Push();
    Factor();
    PopAnd();
}
/*-------------------------------*/ 
 
and in CodeGen, **

void PopAnd(void); 



 
void PopAnd() /* And Primary with TOS */
{
    EmitLn("pop  bx"); 
    EmitLn("xchg ax, bx");
    EmitLn("and  ax, bx");
}
/*-------------------------------*/

 
Your parser should now be able to process almost any sort of logical expression, and (should you be so 
inclined), mixed-mode expressions as well. 
 
Why not "all sorts of logical expressions"?  Because, so far, we haven't dealt with the logical "not" operator, and 
this is where it gets tricky.  The logical "not" operator seems, at first glance, to be identical in its behavior to the 
unary minus, so my first thought was to let the exclusive or operator, '~', double as the unary "not."  That didn't 
work. In my first attempt, procedure SignedTerm simply ate my '~', because the character passed the test for an 
addop, but SignedTerm ignores all addops except '-'.  It would have been easy enough to add another line to 
SignedTerm, but that would still not solve the problem, because note that Expression only accepts a signed term 
for the _FIRST_ argument.   
 
Mathematically, an expression like: 
 

-a * -b 
 
makes little or no sense, and the parser should flag it as an error.  But the same expression, using a logical 
"not," makes perfect sense: 
 

not a and not b 
 
In the case of these unary operators, choosing to make them act the same way seems an artificial force fit,  
sacrificing reasonable behavior on the altar of implementational ease.  While I'm all for keeping the 
implementation as simple as possible, I don't think we should do so at the expense of reasonableness.  Patching 
like this would be missing the main point, which is that the logical "not" is simply NOT the same kind of animal 
as the unary minus.  Consider the exclusive or, which is most naturally written as:   **
 

a~b = (a and not b) or (not a and b) 
 
If we allow the "not" to modify the whole term, the last term in parentheses would be interpreted as: 
 

not(a and b) 
 
which is not the same thing at all.  So it's clear that the logical "not" must be thought of as connected to the 
FACTOR, not the term. 
 
The idea of overloading the '~' operator also makes no sense from a mathematical point of view.  The 
implication of the unary minus is that it's equivalent to a subtraction from zero: 
 

-x <=> 0-x 
 
In fact, in one of my more simple-minded versions of Expression, I reacted to a leading addop by simply 
preloading a zero, then processing the operator as though it were a binary operator.  But a "not" is not 
equivalent to an exclusive or with zero ... that would just give back the original number.  Instead, it's an exclusive 
or with FFFFh, or -1. 
 
In short, the seeming parallel between the unary "not" and the unary minus falls apart under closer scrutiny. 
"not" modifies the factor, not the term, and it is not related to either the unary minus nor the exclusive or. 
Therefore, it deserves a symbol to call its own. What better symbol than the obvious one, also used by C, the '!'  
character?  Using the rules about the way we think the "not" should behave, we should be able to code the 



exclusive or (assuming we'd ever need to), in the very natural form: 
 

a & !b | !a & b 
 
Note that no parentheses are required -- the precedence levels we've chosen automatically take care of things. 
 
If you're keeping score on the precedence levels, this definition puts the '!' at the top of the heap.  The levels 
become: 
 
1. ! 
2. - (unary) 
3. *, /, & 
4. +, -, |, ~ 
 
Looking at this list, it's certainly not hard to see why we had trouble using '~' as the "not" symbol! 
 
So how do we mechanize the rules?  In the same way as we did with SignedTerm, but at the factor level.  We'll 
define a procedure NotFactor: **
 
**Add to module Parser.c:
  void NotFactor(void);

void NotFactor() /* Parse and Translate a Factor with Optional "Not" */
{
    if(Look == '!')
    {   Match('!'); 
        Factor();
        NotIt();
    }
    else 
    {   Factor();
    }
}
/*-------------------------------*/ 
 
 
and call it from all the places where we formerly called Factor, i.e., from Term, Multiply, Divide, and _And.  **

void Term() /* Parse and Translate a Term */
{
    NotFactor();
    while(IsMulop(Look))
    {   switch(Look)
        {   case '*':
                Multiply();
                break;
            case '/':
                Divide();
                break;
            case '&':
                _And();
                break;
            default:
                break;
        }
    }
}
/*-------------------------------*/



void _And() /* Parse and Translate a Boolean And Operation */
{
    Match('&'); 
    Push();
    NotFactor();
    PopAnd();
}
/*-------------------------------*/

Note the new code generation procedure: **
 
**Add to Module CodeGen.c:
  void NotIt(void);
 
void NotIt() /* Bitwise Not Primary */
{
    EmitLn("not  ax"); 
}
/*-------------------------------*/
 
 
Try this now, with a few simple cases. In fact, try that exclusive or example, **
 

x=a&!b|!a&b 
 
 
You should get the code (without the comments, of course): **
 

mov  ax, A ; load a 
push  ax ; push it 
mov  ax, B ; load b 
not  ax ; not it 
pop  bx
xchg ax, bx
and  ax, bx ; and with a 
push  ax ; push result 
mov  ax, A ; load a 
not  ax ; not it 
push  ax ; push it 
mov  ax, B ; load b 
pop  bx
xchg ax, bx
and  ax, bx ; and with !a 
pop  bx
xchg ax, bx
or   ax, bx ; or with first term 
lea  di, X
mov [di], ax ; store result

That's precisely what we'd like to get.  So, at least for both arithmetic and logical operators, our new precedence 
and new, slimmer syntax hang together.  Even the peculiar, but legal, expression with leading addop: 
 

~x 
 
makes sense.  SignedTerm ignores the leading '~', as it should, since the expression is equivalent to: 



 
0~x, 

 
which is equal to x. 
 
When we look at the BNF we've created, we find that our boolean algebra now adds only one extra line: **
 
 
<not_factor> = [!] <factor> 
<factor>      = <variable> | <constant> | '(' <expression> ')'  
<signed_term> = [<addop>] <term> 
<term>        = <not_factor> (<mulop> <not_factor>)*  
<expression>  = <signed_term> (<addop> <term>)* 
<assignment>  = <variable> '=' <expression> 
 
 
That's a big improvement over earlier efforts.  Will our luck continue to hold when we get to relational operators? 
We'll find out soon, but it will have to wait for the next installment. We're at a good stopping place, and I'm 
anxious to get this installment into your hands.  It's already been a year since the release of Installment 15.  I 
blush to admit that all of this current installment has been ready for almost as long, with the exception of 
relational operators.  But the information does you no good at all, sitting on my hard disk, and by holding it back 
until the relational operations were done, I've kept it out of your hands for that long.  It's time for me to let go of it  
and get it out where you can get value from it. Besides, there are quite a number of serious philosophical 
questions associated with the relational operators, as well, and I'd rather save them for a separate installment 
where I can do them justice. 
 
Have fun with the new, leaner arithmetic and logical parsing, and I'll see you soon with relationals. 
 


