
**Notice: This is a translation from: Turbo Pascal and the 68000 cpu, to: ansi 'C' and the x86 cpu, of Jack
Crenshaw's original tutorial. It contains modifications to the original text to make it more
relevant to the 'C' language and the x86. By no means is it perfect, since rather than rewrite the entire text and
make improvements, I tried to only make those modification required so that the main flow of the tutirial stayed
the same. Modifications to the text will be indicated by a: ** .
Also, I'll be using the standard registers of the x86 cpu (ax,bx,cx,...), rather than the extended register
(eax,ebx, ...). I see no real need to use the extended registers.
Special thanks to those who helped with translating Pascal to 'C' and gave me encouragement to do this.
--

LET'S BUILD A COMPILER!

By

Jack W. Crenshaw, Ph.D.

24 July 1988

Part I: INTRODUCTION

**
* *
* COPYRIGHT NOTICE *

* *
* Copyright (C) 1988 Jack W. Crenshaw. All rights reserved. *

* *
**

INTRODUCTION
This series of articles is a tutorial on the theory and practice of developing language parsers and compilers.
Before we are finished, we will have covered every aspect of compiler construction, designed a new
programming language, and built a working compiler.

Though I am not a computer scientist by education (my Ph.D. is in a different field, Physics), I have been
interested in compilers for many years. I have bought and tried to digest the contents of virtually every book
on the subject ever written. I don't mind telling you that it was slow going. Compiler texts are written for
Computer Science majors, and are tough sledding for the rest of us. But over the years a bit of it began to
seep in. What really caused it to jell was when I began to branch off on my own and begin to try things on my
own computer. Now I plan to share with you what I have learned. At the end of this series you will by no
means be a computer scientist, nor will you know all the esoterics of compiler theory. I intend to completely
ignore the more theoretical aspects of the subject. What you _WILL_ know is all the practical aspects that
one needs to know to build a working system.

This is a "learn-by-doing" series. In the course of the series I will be performing experiments on a computer.
You will be expected to follow along, repeating the experiments that I do, and performing some on your
own. I will be using **Ansi C on a PC clone. I will periodically insert examples written in **C. These will be
executable code, which you will be expected to copy into your own computer and run. If you don't have a copy
of **C, you will be severely limited in how well you will be able to follow what's going on. If you don't have a
copy, I urge you to get one. After all, it's an excellent product, good for many other uses!

Some articles on compilers show you examples, or show you (as in the case of Small-C) a finished product,
which you can then copy and use without a whole lot of understanding of how it works. I hope to do much
more than that. I hope to teach you HOW the things get done, so that you can go off on your own and not

only reproduce what I have done, but improve on it.

This is admittedly an ambitious undertaking, and it won't be done in one page. I expect to do it in the course of
a number of articles. Each article will cover a single aspect of compiler theory, and will pretty much stand
alone. If all you're interested in at a given time is one aspect, then you need to look only at that one article.
Each article will be uploaded as it is complete, so you will have to wait for the last one before you can consider
yourself finished. Please be patient.

The average text on compiler theory covers a lot of ground that we won't be covering here. The typical
sequence is:

 o An introductory chapter describing what a compiler is.

 o A chapter or two on syntax equations, using Backus-Naur Form (BNF).

 o A chapter or two on lexical scanning, with emphasis on deterministic and non-deterministic finite
 automata.

 o Several chapters on parsing theory, beginning with top-down recursive descent, and ending with
 LALR parsers.

 o A chapter on intermediate languages, with emphasis on P-code and similar reverse polish
 representations.

 o Many chapters on alternative ways to handle subroutines and parameter passing, type
 declarations, and such.

 o A chapter toward the end on code generation, usually for some imaginary CPU with a simple
 instruction set. Most readers (and in fact, most college classes) never make it this far.

 o A final chapter or two on optimization. This chapter often goes unread, too.

I'll be taking a much different approach in this series. To begin with, I won't dwell long on options. I'll be
giving you _A_ way that works. If you want to explore options, well and good ... I encourage you to do
so ... but I'll be sticking to what I know. I also will skip over most of the theory that puts people to sleep. Don't
get me wrong: I don't belittle the theory, and it's vitally important when it comes to dealing with the more
tricky parts of a given language. But I believe in putting first things first. Here we'll be dealing with the 95%
of compiler techniques that don't need a lot of theory to handle.

I also will discuss only one approach to parsing: top-down, recursive descent parsing, which is the _ONLY_
technique that's at all amenable to hand-crafting a compiler. The other approaches are only useful if you
have a tool like YACC, and also don't care how much memory space the final product uses.

I also take a page from the work of Ron Cain, the author of the original Small C. Whereas almost all other
compiler authors have historically used an intermediate language like P-code and divided the compiler
into two parts (a front end that produces P-code, and a back end that processes P-code to produce
executable object code), Ron showed us that it is a straightforward matter to make a compiler
directly produce executable object code, in the form of assembler language statements. The code will
NOT be the world's tightest code ... producing optimized code is a much more difficult job. But it will work,
and work reasonably well. Just so that I don't leave you with the impression that our end product will be
worthless, I _DO_ intend to show you how to "soup up" the compiler with some optimization.

Finally, I'll be using some tricks that I've found to be most helpful in letting me understand what's going on
without wading through a lot of boiler plate. Chief among these is the use of single-character tokens, with no
embedded spaces, for the early design work. I figure that if I can get a parser to recognize and deal with I-T-
L, I can get it to do the same with IF-THEN-ELSE. And I can. In the second "lesson," I'll show you just how
easy it is to extend a simple parser to handle tokens of arbitrary length. As another trick, I completely
ignore file I/O, figuring that if I can read source from the keyboard and output object to the screen, I can also
do it from/to disk files. Experience has proven that once a translator is working correctly, it's a

straightforward matter to redirect the I/O to files. The last trick is that I make no attempt to do error
correction/ recovery. The programs we'll be building will RECOGNIZE errors, and will not CRASH, but they
will simply stop on the first error ... There will be other tricks that you'll see as you go. Most of them can't be
found in any compiler textbook, but they work.

A word about style and efficiency. As you will see, I tend to write programs in _VERY_ small, easily
understood pieces. None of the procedures we'll be working with will be more than about 15-20 lines long. I'm
a fervent devotee of the KISS (Keep It Simple, Sidney) school of software development. I try to never do
something tricky or complex, when something simple will do. Inefficient? Perhaps, but you'll like the results.
As Brian Kernighan has said, FIRST make it run, THEN make it run fast. If, later on, you want to go back
and tighten up the code in one of our products, you'll be able to do so, since the code will be quite
understandable. If you do so, however, I urge you to wait until the program is doing everything you want it to.

I also have a tendency to delay building a module until I discover that I need it. Trying to anticipate
every possible future contingency can drive you crazy, and you'll generally guess wrong anyway. In this
modern day of screen editors and fast compilers, I don't hesitate to change a module when I feel I need a more
powerful one. Until then, I'll write only what I need.

One final caveat: One of the principles we'll be sticking to here is that we don't fool around with P-code or
imaginary CPUs, but that we will start out on day one producing working, executable object code, at least in the
form of assembler language source. **[snip]

THE CRADLE
Every program needs some boiler plate ... I/O routines, error message routines, etc. The programs we
develop here will be no exceptions. I’ve tried to hold this stuff to an absolute minimum, however, so that
we can concentrate on the important stuff without losing it among the trees. The code given below
represents about the minimum that we need to get anything done. It consists of some I/O routines, an error-
handling routine and a skeleton, null main program. I call it our cradle. As we develop other routines, we’ll
add them to the cradle, and add the calls to them as we need to. Make a copy of the cradle and save it,
because we’ll be using it more than once.
There are many different ways to organize the scanning activities of a parser. In Unix systems, authors tend
to use getc and ungetc. I’ve had very good luck with the approach shown here, which is to use a single,
global, lookahead character. Part of the initialization procedure (the only part, so far!) serves to “prime the
pump” by reading the first character from the input stream. No other special techniques are required with
**C ... each successive call to GetChar will read the next character in the stream.

**Note: copy this top portion of C code, as it will be required in order to compile the examples provided.

/* --- Cradle Program 'C', x86 --- */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* - Constants - */
#define TAB 9
#define BEEP 7

/* - Global Variables - */
 char Look; /* look ahead character */
 char iGetNum;
 char cGetName;

/* ------ Function Prototypes ------ */
 void _GetChar(void); void Error(char *);
 void _Abort(char *); void Expected(char *);
 void Match(char); void GetName(void);
 void GetNum(void); void Emit(char *);
 void EmitLn(char *); void Init(void);

/* ------ End Prototypes ------ */

void _GetChar() /* Read New Character From Input Stream */
{
 Look = getchar();
}
/*-------------------------------*/

void Error(char *string) /* Report an Error */
{
 printf("%c\n", BEEP);
 printf("Error: %s.\n", string);
}
/*-------------------------------*/

void _Abort(char *string) /* Report Error and Halt */
{
 Error(string);
 exit(1);
}
/*-------------------------------*/

void Expected(char *string) /* Report What Was Expected */
{ char a_string[20];

 strcpy(a_string, string);
 strcat(a_string, " Expected");
 _Abort(a_string);
}
/*-------------------------------*/

void Match(char x) /* Match a Specific Input Character */
{ char string[6];

 if(Look == x)
 { _GetChar();
 }
 else
 { strcpy(string, "\" \"");
 string[1] = x;
 Expected(string);
 }
}
/*-------------------------------*/

void GetName() /* Get an Identifier */
{
 if(isalpha(Look) == 0)
 { Expected("Name");
 }
 cGetName = toupper(Look);
 _GetChar();
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{

 if(isdigit(Look) == 0)
 { Expected("Integer");
 }
 iGetNum = Look;
 _GetChar();
}
/*-------------------------------*/

void Emit(char *a_string) /* Output a String with Tab */
{
 printf("\%c %s", TAB, a_string);
}
/*-------------------------------*/

void EmitLn(char *a_string) /* Output a String with Tab and CRLF */
{
 Emit(a_string);
 printf("\n");
}
/*-------------------------------*/

void Init() /* Initialize */
{ _GetChar();
}
/*-------------------------------*/

void main() /* Main Program */
{ Init();
}
/*-------------------------------*/

That's it for this introduction. Copy the code above into **C and compile it. Make sure that it compiles and runs
correctly. Then proceed to the first lesson, which is on expression parsing.

GETTING STARTED
If you’ve read the introduction document to this series, you will already know what we’re about. You will also
have copied the cradle software into your **C system, and have compiled it. So you should be ready to go.

The purpose of this article is for us to learn how to parse and translate mathematical expressions. What we
would like to see as output is a series of assembler-language statements that perform the desired actions.
For purposes of definition, an expression is the right-hand side of an equation, as in

x = 2*y + 3/(4*z)
In the early going, I’ll be taking things in VERY small steps.
That’s so that the beginners among you won’t get totally lost. There are also some very good lessons to be
learned early on, that will serve us well later. For the more experienced readers: bear with me. We’ll get rolling
soon enough.

SINGLE DIGITS
In keeping with the whole theme of this series (KISS, remember?), let’s start with the absolutely most simple
case we can think of. That, to me, is an expression consisting of a single digit.
Before starting to code, make sure you have a baseline copy of the “cradle” that I gave last time. We’ll be
using it again for other experiments. Then add this code:**

/* - Function Prototypes - */
 void Expression(void);

void Expression() /* Parse and Translate a Math Expression */
{ char a_string[20];

 GetNum();
 strcpy(a_string, "mov ax, ");
 a_string[9] = iGetNum;
 EmitLn(a_string);
}
/*-------------------------------*/

And add the line “Expression;” to the main program so that it reads:**

void main() /* Main Program */
{
 Init();
 Expression();
}
/*-------------------------------*/

Now run the program. Try any single-digit number as input. You should get a single line of assembler-
language output. Now try any other character as input, and you’ll see that the parser properly reports an
error.

CONGRATULATIONS! You have just written a working translator!
OK, I grant you that it’s pretty limited. But don’t brush it off too lightly. This little “compiler” does, on a very
limited scale, exactly what any larger compiler does: it correctly recognizes legal statements in the input
“language” that we have defined for it, and it produces correct, executable assembler code, suitable for
assembling into object format. Just as importantly, it correctly recognizes statements that are NOT legal,
and gives a meaningful error message. Who could ask for more? As we expand our parser, we’d better make
sure those two characteristics always hold true.
There are some other features of this tiny program worth mentioning. First, you can see that we don’t
separate code generation from parsing ... as soon as the parser knows what we want done, it generates the
object code directly. In a real compiler, of course, the reads in GetChar would be from a disk file, and the
writes to another disk file, but this way is much easier to deal with while we’re experimenting.
Also note that an expression must leave a result somewhere. I’ve chosen the **x86 register AX.
I could have made some other choices, but this one makes sense.

BINARY EXPRESSIONS
Now that we have that under our belt, let’s branch out a bit. Admittedly, an “expression” consisting of only
one character is not going to meet our needs for long, so let’s see what we can do to extend it. Suppose we
want to handle expressions of the form:

1+2
or 4-3
or, in general, <term> +/- <term>

(That’s a bit of Backus-Naur Form, or BNF.)

To do this we need a procedure that recognizes a term and leaves its result somewhere, and another that
recognizes and distinguishes between a ‘+’ and a ‘-‘ and generates the appropriate code. But if
Expression is going to leave its result in AX, where should Term leave its result? Answer: the same place.
We’re going to have to save the first result of Term somewhere before we get the next one.
OK, basically what we want to do is have procedure Term do what Expression was doing before. So just
RENAME procedure Expression as Term:

**add these to Function Prototypes:
 void Term(void); /* rename Expression() to Term() */
 void Expression(void);

void Term() /* Parse and Translate a Math Expression */
{ char a_string[20];

 GetNum();
 strcpy(a_string, "mov ax, ");
 a_string[9] = iGetNum;
 EmitLn(a_string);
}
/*-------------------------------*/

 and enter the following new version of Expression:

void Expression() /* Parse and Translate an Expression */
{ char a_string[20];

 Term();
 strcpy(a_string, "mov bx, ax");
 EmitLn(a_string);
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 strcpy(string, "Addop");
 Expected(string);
 break;
 }
}
/*-------------------------------*/

Next, just above Expression enter these two procedures:

**add these to Function Prototypes:
 void Add(void);
 void Subtract(void);

void Add() /* Recognize and Translate an Add */
{
 Match('+');
 Term();
 EmitLn("add ax, bx");
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */
{
 Match('-');
 Term();
 EmitLn("sub ax, bx");
}
/*-------------------------------*/

When you’re finished with that, the order of the routines should be:

o Term (The OLD Expression)
o Add
o Subtract
o Expression

Now run the program. Try any combination you can think of of two single digits, separated by a ‘+’ or a ‘-‘.
You should get a series of four assembler-language instructions out of each run. Now try some expressions
with deliberate errors in them. Does the parser catch the errors?

Take a look at the object code generated. There are two observations we can make. First, the code
generated is NOT what we would write ourselves. The sequence:**

MOV AX, #n
MOV BX, AX

is inefficient. If we were writing this code by hand, we would probably just load the data directly to BX.

There is a message here: code generated by our parser is less efficient than the code we would write by
hand. Get used to it. That’s going to be true throughout this series. It’s true of all compilers to some extent.
Computer scientists have devoted whole lifetimes to the issue of code optimization, and there are indeed things
that can be done to improve the quality of code output. Some compilers do quite well, but there is a heavy
price to pay in complexity, and it’s a losing battle anyway ... there will probably never come a time when a
good assembler-language pro-grammer can’t out-program a compiler. Before this session is over, I’ll briefly
mention some ways that we can do a little op-timization, just to show you that we can indeed improve things
without too much trouble. But remember, we’re here to learn, not to see how tight we can make the object
code. For now, and really throughout this series of articles, we’ll studiously ignore optimization and
concentrate on getting out code that works.

Speaking of which: ours DOESN'T! The code is _WRONG_! As things are working now, the subtraction
process subtracts BX (which has the FIRST argument in it) from AX (which has the second). That's the wrong
way, so we end up with the wrong sign for the result. So let's fix up procedure Subtract with a sign-changer,
so that it reads

void Subtract() /* Recognize and Translate a Subtract */
{
 Match('-');
 Term();
 EmitLn("sub ax, bx");
 EmitLn("neg ax");
}
/*-------------------------------*/

Now our code is even less efficient, but at least it gives the right answer! Unfortunately, the rules that give
the meaning of math expressions require that the terms in an expression come out in an inconvenient order for
us. Again, this is just one of those facts of life you learn to live with. This one will come back to haunt us
when we get to division.
OK, at this point we have a parser that can recognize the sum or difference of two digits. Earlier, we could
only recognize a single digit. But real expressions can have either form (or an infinity of others). For kicks, go
back and run the program with the single input line '1'.
Didn't work, did it? And why should it? We just finished telling our parser that the only kinds of
expressions that are legal are those with two terms. We must rewrite procedure Expression to be a lot
more broadminded, and this is where things start to take the shape of a real parser.

GENERAL EXPRESSIONS
In the REAL world, an expression can consist of one or more terms, separated by "addops" ('+' or '-'). In
BNF, this is written

<expression> = <term> [<addop> <term>]*
We can accomodate this definition of an expression with the addition of a simple loop to procedure
Expression:**

void Expression() /* Parse and Translate an Expression */
{
 Term();
 while((Look == '+') || (Look == '-'))
 { EmitLn("mov bx, ax");
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 Expected("Addop");
 break;
 }
 }
}
/*-------------------------------*/

NOW we're getting somewhere! This version handles any number of terms, and it only cost us two extra lines
of code. As we go on, you'll discover that this is characteristic of top-down parsers ... it only takes a few lines
of code to accomodate extensions to the language. That's what makes our incremental approach possible.
Notice, too, how well the code of procedure Expression matches the BNF definition. That, too, is characteristic
of the method. As you get proficient in the approach, you'll find that you can turn BNF into parser code just
about as fast as you can type!

OK, compile the new version of our parser, and give it a try. As usual, verify that the "compiler" can handle
any legal expression, and will give a meaningful error message for an illegal one. Neat, eh? You might note
that in our test version, any error message comes out sort of buried in whatever code had already been
generated. But remember, that's just because we are using the CRT as our "output file" for this series of
experiments. In a production version, the two outputs would be separated ... one to the output file, and one to
the screen.

USING THE STACK
At this point I'm going to violate my rule that we don't introduce any complexity until it's absolutely
necessary, long enough to point out a problem with the code we're generating. As things stand now, the parser
uses AX for the "primary" register, and BX as a place to store the partial sum. That works fine for now,
because as long as we deal with only the "addops" '+' and '-', any new term can be added in as soon as it is
found. But in general that isn't true. Consider, for example, the expression

1+(2-(3+(4-5)))

If we put the '1' in BX, where do we put the '2'? Since a general expression can have any degree of
complexity, we're going to run out of registers fast!

Fortunately, there's a simple solution. Like every modern microprocessor, the **x86 has a stack, which is
the perfect place to save a variable number of items. So instead of moving the term in AX to BX, let's just push
it onto the stack. For the benefit of those unfamiliar with **x86 assembler language, a push is written:**

PUSH AX
and a pop,

POP AX

So let's change the EmitLn in Expression to read:**

{ EmitLn("push ax");

and these lines in Add and Subtract to:**

 EmitLn("pop bx");
EmitLn("add ax, bx");

and
EmitLn("pop bx");
EmitLn("sub ax, bx");

respectively. Now try the parser again and make sure we haven't broken it.
Once again, the generated code is less efficient than before, but it's a necessary step, as you'll see.

MULTIPLICATION AND DIVISION
Now let's get down to some REALLY serious business. As you all know, there are other math operators
than "addops" ... expressions can also have multiply and divide operations. You also know that there is
an implied operator PRECEDENCE, or hierarchy, associated with expressions, so that in an expression like

2 + 3 * 4,

we know that we're supposed to multiply FIRST, then add. (See why we needed the stack?)

In the early days of compiler technology, people used some rather complex techniques to insure that the
operator precedence rules were obeyed. It turns out, though, that none of this is necessary ... the rules
can be accommodated quite nicely by our top-down parsing technique. Up till now, the only form that we've
considered for a term is that of a single decimal digit.
More generally, we can define a term as a PRODUCT of FACTORS;
i.e.,

<term> = <factor> [<mulop> <factor]*

What is a factor? For now, it's what a term used to be ... a single digit.
Notice the symmetry: a term has the same form as an expression. As a matter of fact, we can add to our
parser with a little judicious copying and renaming. But to avoid confusion, the listing below is the complete
set of parsing routines. (Note the way we handle the reversal of operands in Divide.)

**add to Function Prototypes:
 void Factor(void);
 void Multiply(void);
 void Divide(void);

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];

 GetNum();
 strcpy(a_string, "mov ax, ");
 a_string[9] = iGetNum;
 EmitLn(a_string);
}
/*-------------------------------*/

void Multiply() /* Recognize and Translate a Multiply */
{ char a_string[20];

 Match('*');
 Factor();
 EmitLn("pop bx");
 EmitLn("mul bx");
}
/*-------------------------------*/

void Divide() /* Recognize and Translate a Divide */
{ char a_string[20];

 Match('/');
 Factor();
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("div bx");
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
 Factor();
 while((Look == '*') || (Look == '/'))
 { EmitLn("push ax");
 switch(Look)
 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 default:
 Expected("Mulop");
 break;
 }
 }
}
/*-------------------------------*/

void Add() /* Recognize and Translate an Add */
{
 Match('+');
 Term();
 EmitLn("pop bx");
 EmitLn("add ax, bx");
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */
{
 Match('-');
 Term();
 EmitLn("pop bx");
 EmitLn("sub ax, bx");
 EmitLn("neg ax");
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
 Term();
 while(IsAddop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;

 default:
 Expected("Addop");
 break;
 }
 }
}
/*-------------------------------*/

Hot dog! A NEARLY functional parser/translator, **[snip] ! The output is starting to look really useful, if you
continue to overlook the inefficiency, which I hope you will. Remember, we're not trying to produce tight code
here.

PARENTHESES
We can wrap up this part of the parser with the addition of parentheses with math expressions. As you
know, parentheses are a mechanism to force a desired operator precedence. So, for example, in the
expression

2*(3+4) ,

the parentheses force the addition before the multiply. Much more importantly, though, parentheses give us
a mechanism for defining expressions of any degree of complexity, as in

(1+2)/((3+4)+(5-6))

The key to incorporating parentheses into our parser is to realize that no matter how complicated an
expression enclosed by parentheses may be, to the rest of the world it looks like a simple factor. That is,
one of the forms for a factor is:

<factor> = (<expression>)

This is where the recursion comes in. An expression can contain a factor which contains another expression
which contains a factor, etc., ad infinitum.
Complicated or not, we can take care of this by adding just a few lines of **C to procedure Factor:**

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else
 { GetNum();
 strcpy(a_string, "mov ax, ");
 a_string[9] = iGetNum;
 EmitLn(a_string);
 }
}
/*-------------------------------*/

Note again how easily we can extend the parser, and how well the **C code matches the BNF syntax.
As usual, compile the new version and make sure that it correctly parses legal sentences, and flags illegal
ones with an error message.

UNARY MINUS
At this point, we have a parser that can handle just about any expression, right? OK, try this input sentence:

-1

WOOPS! It doesn't work, does it? Procedure Expression expects everything to start with an integer, so it
coughs up the leading minus sign. You'll find that +3 won't work either, nor will something like

-(3-2) .

There are a couple of ways to fix the problem. The easiest (although not necessarily the best) way is to
stick an imaginary leading zero in front of expressions of this type, so that -3 becomes 0-3. We can easily
patch this into our existing version of Expression:**

void Expression() /* Parse and Translate an Expression */
{
 if(IsAddop(Look))
 { EmitLn("mov ax, 0");
 }
 else
 { Term();
 }
 while(IsAddop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 Expected("Addop");
 break;
 }
 }
}
/*-------------------------------*/

I TOLD you that making changes was easy! **[snip]. Note the new reference to function IsAddop. Since
the test for an addop appeared twice, I chose to embed it in the new function. The form of IsAddop should
be apparent from that for IsAlpha. Here it is:**

int IsAddop(char ch) /* Recognize an Addop */
{ int rval=0;

 if((ch == '+') || (ch == '-'))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

OK, make these changes to the program and recompile. You should also include IsAddop in your baseline
copy of the cradle. We'll be needing it again later. Now try the input -1 again. Wow! The efficiency of the
code is pretty poor ... six lines of code just for loading a simple constant ... but at least it's correct. Remember,
we're not trying to replace **C here.

At this point we're just about finished with the structure of our expression parser. This version of the program
should correctly parse and compile just about any expression you care to throw at it. It's still limited in that we
can only handle factors involving single decimal digits. But I hope that by now you're starting to get the
message that we can accomodate further extensions with just some minor changes to the parser. You
probably won't be surprised to hear that a variable or even a function call is just another kind of a factor.
In the next session, I'll show you just how easy it is to extend our parser to take care of these things too, and
I'll also show you just how easily we can accomodate multicharacter numbers and variable names. So you see,
we're not far at all from a truly useful parser.

A WORD ABOUT OPTIMIZATION
Earlier in this session, I promised to give you some hints as to how we can improve the quality of the generated
code. As I said, the production of tight code is not the main purpose of this series of articles. But you need to
at least know that we aren't just wasting our time here ... that we can indeed modify the parser further to
make it produce better code, without throwing away everything we've done to date. As usual, it turns out that
SOME optimization is not that difficult to do ... it simply takes some extra code in the parser.

There are two basic approaches we can take:
o Try to fix up the code after it's generated

This is the concept of "peephole" optimization. The general idea it that we know what combinations
of instructions the compiler is going to generate, and we also know which ones are pretty bad (such
as the code for -1, above). So all we do is to scan the produced code, looking for those
combinations, and replacing them by better ones. It's sort of a macro expansion, in reverse, and
a fairly straightforward exercise in pattern-matching. The only complication, really, is that there
may be a LOT of such combinations to look for. It's called peephole optimization simply because it

only looks at a small group of instructions at a time. Peephole optimization can have a dramatic effect
on the quality of the code, with little change to the structure of the compiler itself. There is a price to
pay, though, in both the speed, size, and complexity of the compiler. Looking for all those combinations
calls for a lot of IF tests, each one of which is a source of error. And, of course, it takes time. In the
classical implementation of a peephole optimizer, it's done as a second pass to the compiler. The

output code is written to disk, and then the optimizer reads and processes the disk file again. As
a matter of fact, you can see that the optimizer could even be a separate PROGRAM from the compiler
proper. Since the optimizer only looks at the code through a small "window" of instructions (hence the
name), a better implementation would be to simply buffer up a few lines of output, and scan the buffer after
each EmitLn.

o Try to generate better code in the first place
This approach calls for us to look for special cases BEFORE we Emit them. As a trivial
example, we should be able to identify a constant zero, and Emit an XOR instead of a MOV,

or even do nothing at all, as in an add of zero, for example. Closer to home, if we had chosen to
recognize the unary minus in Factor instead of in Expression, we could treat constants like -1 as ordinary
constants, rather then generating them from positive ones. None of these things are difficult to deal with ...
they only add extra tests in the code, which is why I haven't included them in our program. The way I see it,
once we get to the point that we have a working compiler, generating useful code that executes, we can
always go back and tweak the thing to tighten up the code produced. That's why there are Release
2.0's in the world.

There IS one more type of optimization worth mentioning, that seems to promise pretty tight code without too
much hassle. It's my "invention" in the sense that I haven't seen it suggested in print anywhere, though I have
no illusions that it's original with me.

This is to avoid such a heavy use of the stack, by making better use of the CPU registers. Remember back
when we were doing only addition and subtraction, that we used registers AX and BX, rather than the
stack? It worked, because with only those two operations, the "stack" never needs more than two entries.

Well, the **x86 has eight data registers. Why not use them as a privately managed stack? The key is to
recognize that, at any point in its processing, the parser KNOWS how many items are on the stack, so it can
indeed manage it properly. We can define a private "stack pointer" that keeps track of which stack level we're
at, and addresses the corresponding register. Procedure Factor, for example, would not cause data to be
loaded into register AX, but into whatever the current "top-of-stack" register happened to be.

What we're doing in effect is to replace the CPU's RAM stack with a locally managed stack made up of
registers. For most expressions, the stack level will never exceed eight, so we'll get pretty good code out.
Of course, we also have to deal with those odd cases where the stack level DOES exceed eight, but that's
no problem either. We simply let the stack spill over into the CPU stack. For levels beyond eight, the code
is no worse than what we're generating now, and for levels less than eight, it's considerably better.
For the record, I have implemented this concept, just to make sure it works before I mentioned it to you.
It does. In practice, it turns out that you can't really use all eight levels ... you need at least one register free to
reverse the operand order for division. **[snip]. For expressions that include function calls, we would also

need a register reserved for them. Still, there is a nice improvement in code size for most expressions.
So, you see, getting better code isn't that difficult, but it does add complexity to the our translator ...
complexity we can do without at this point. For that reason, I STRONGLY suggest that we continue to ignore
efficiency issues for the rest of this series, secure in the knowledge that we can indeed improve the code
quality without throwing away what we've done.

Next lesson, I'll show you how to deal with variables factors and function calls. I'll also show you just how easy it
is to handle multicharacter tokens and embedded white space.

INTRODUCTION
In the last installment, we examined the techniques used to parse and translate a general math expression. We
ended up with a simple parser that could handle arbitrarily complex expressions, with two restrictions:
 o No variables were allowed, only numeric factors
 o The numeric factors were limited to single digits

In this installment, we'll get rid of those restrictions. We'll also extend what we've done to include
assignment statements function calls and. Remember, though, that the second restriction was mainly
self-imposed ... a choice of convenience on our part, to make life easier and to let us concentrate on the
fundamental concepts. As you'll see in a bit, it's an easy restriction to get rid of, so don't get too hung up
about it. We'll use the trick when it serves us to do so, confident that we can discard it when we're ready to.

VARIABLES
Most expressions that we see in practice involve variables, such as

b * b + 4 * a * c

No parser is much good without being able to deal with them.
Fortunately, it's also quite easy to do.
Remember that in our parser as it currently stands, there are two kinds of factors allowed: integer constants
and expressions within parentheses. In BNF notation,

<factor> = <number> | (<expression>)

The '|' stands for "or", meaning of course that either form is a legal form for a factor. Remember, too, that we
had no trouble knowing which was which ... the lookahead character is a left paren '(' in one case, and a digit
in the other.
It probably won't come as too much of a surprise that a variable is just another kind of factor. So we extend
the BNF above to read:

<factor> = <number> | (<expression>) | <variable>

**[snip]
Armed with that, let's modify the current version of Factor to read:

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { GetName();
 strcpy(a_string, "mov ax, ");
 a_string[9] = cGetName;
 EmitLn(a_string);
 }

 else
 { GetNum();
 strcpy(a_string, "mov ax, ");
 a_string[9] = iGetNum;
 EmitLn(a_string);
 }
}
/*-------------------------------*/

I've remarked before how easy it is to add extensions to the parser, because of the way it's structured.
You can see that this still holds true here. **[snip]. Notice, too, how the if-else-else structure exactly parallels
the BNF syntax equation.
OK, compile and test this new version of the parser. That didn't hurt too badly, did it?

FUNCTIONS
There is only one other common kind of factor supported by most languages: the function call. It's really too
early for us to deal with functions well, because we haven't yet addressed the issue of parameter passing.
What's more, a "real" language would include a mechanism to support more than one type, one of which
should be a function type. We haven't gotten there yet, either. But I'd still like to deal with functions now for a
couple of reasons. First, it lets us finally wrap up the parser in something very close to its final form, and
second, it brings up a new issue which is very much worth talking about.

Up till now, we've been able to write what is called a "predictive parser." That means that at any point,
we can know by looking at the current lookahead character exactly what to do next. That isn't the case when
we add functions. Every language has some naming rules for what constitutes a legal identifier. For the
present, ours is simply that it is one of the letters 'a'..'z'. The problem is that a variable name and a
function name obey the same rules. So how can we tell which is which? One way is to require that they each
be declared before they are used. **C takes that approach. The other is that we might require a function to
be followed by a (possibly empty) parameter list. That's the rule used in C.

Since we don't yet have a mechanism for declaring types, let's use the C rule for now. Since we also don't
have a mechanism to deal with parameters, we can only handle empty lists, so our function calls will have
the form
 x() .

Since we're not dealing with parameter lists yet, there is nothing to do but to call the function, so we need
only to issue a **CALL instead of a MOV.

Now that there are two possibilities for the "if (isalpha" branch of the test in Factor, let's treat them in a
separate procedure.
Modify Factor to read:

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { Ident();
 }
 else
 { GetNum();
 strcpy(a_string, "mov ax, ");
 a_string[9] = iGetNum;
 EmitLn(a_string);

 }
}
/*-------------------------------*/

and insert before it the new procedure

**add to Prototypes:
 void Ident(void);

void Ident() /* Parse and Translate an Identifier */
{ char a_string[20];
 char *Name;

 Name = GetName();
 if(Look == '(')
 { Match('(');
 Match(')');
 strcpy(a_string, "call ");
 a_string[6] = cGetName;
 EmitLn(a_string);
 }
 else
 { strcpy(a_string, "mov ax, ");
 a_string[9] = cGetName;
 EmitLn(a_string);
 }
}
/*-------------------------------*/

OK, compile and test this version. Does it parse all legal expressions? Does it correctly flag badly formed
ones?

The important thing to notice is that even though we no longer have a predictive parser, there is little or no
complication added with the recursive descent approach that we're using. At the point where Factor finds an
identifier (letter), it doesn't know whether it's a variable name or a function name, nor does it really care. It
simply passes it on to Ident and leaves it up to that procedure to figure it out. Ident, in turn, simply tucks away
the identifier and then reads one more character to decide which kind of identifier it's dealing with.

Keep this approach in mind. It's a very powerful concept, and it should be used whenever you encounter an
ambiguous situation requiring further lookahead. Even if you had to look several tokens ahead, the principle
would still work.

MORE ON ERROR HANDLING
As long as we're talking philosophy, there's another important issue to point out: error handling. Notice that
although the parser correctly rejects (almost) every malformed expression we can throw at it, with a
meaningful error message, we haven't really had to do much work to make that happen. In fact, in the whole
parser per se (from Ident through Expression) there are only two calls to the error routine, Expected. Even
those aren't necessary ... if you'll look again in Term and Expression, you'll see that those statements can't be
reached. I put them in early on as a bit of insurance, but they're no longer needed. Why don't you delete
them now?

So how did we get this nice error handling virtually for free? It's simply that I've carefully avoided reading a
character directly using GetChar. Instead, I've relied on the error handling in GetName, GetNum, and
Match to do all the error checking for me. Astute readers will notice that some of the calls to Match (for
example, the ones in Add and Subtract) are also unnecessary ... we already know what the character is by the
time we get there ... but it maintains a certain symmetry to leave them in, and the general rule to always
use Match instead of GetChar is a good one.

I mentioned an "almost" above. There is a case where our error handling leaves a bit to be desired. So far
we haven't told our parser what and end-of-line looks like, or what to do with embedded white space. So
a space character (or any other character not part of the recognized character set) simply causes the parser
to terminate, ignoring the unrecognized characters.

It could be argued that this is reasonable behavior at this point. In a "real" compiler, there is usually another
statement following the one we're working on, so any characters not treated as part of our expression will either
be used for or rejected as part of the next one.

But it's also a very easy thing to fix up, even if it's only temporary. All we have to do is assert that the
expression should end with an end-of-line , i.e., a carriage return.

To see what I'm talking about, try the input line

 1+2 <space> 3+4

See how the space was treated as a terminator? Now, to make the compiler properly flag this, add the line
if(Look != '\n')
{ Expected("Newline");
}

in the main program, just after the call to Expression. That catches anything left over in the input stream.
**[snip].
As usual, recompile the program and verify that it does what it's supposed to.

ASSIGNMENT STATEMENTS
OK, at this point we have a parser that works very nicely. **[snip]. The compiled object file is a whopping
4752 bytes. Not bad, considering we weren't trying very hard to save either source code or object size. We
just stuck to the KISS principle.

Of course, parsing an expression is not much good without having something to do with it afterwards.
Expressions USUALLY (but not always) appear in assignment statements, in the form

 <Ident> = <Expression>

We're only a breath away from being able to parse an assignment statement, so let's take that last step. Just
after procedure Expression, add the following new procedure:

**add to Prototypes:
 void Assignment(void);

void Assignment()
{ char a_string[20];

 GetName();
 Match('=');
 Expression();
 strcpy(a_string, "lea dx, ");
 a_string[9] = cGetName;
 EmitLn(a_string);
 EmitLn("mov [dx], ax");
}
/*-------------------------------*/

Note again that the code exactly parallels the BNF. And notice further that the error checking was painless,
handled by GetName and Match. **[snip].

Now change the call to Expression, in the main program, to one to Assignment. That's all there is to it.

Son of a gun! We are actually compiling assignment statements. If those were the only kind of statements in a
language, all we'd have to do is put this in a loop and we'd have a full-fledged compiler!

Well, of course they're not the only kind. There are also little items like control statements (IFs and loops),
procedures, declarations, etc. But cheer up. The arithmetic expressions that we've been dealing with are
among the most challenging in a language. Compared to what we've already done, control statements
will be easy. I'll be covering them in the fifth installment. And the other statements will all fall in line, as long
as we remember to KISS.

MULTI-CHARACTER TOKENS
Through out this series, I've been carefully restricting everything we do to single-character tokens, all
the while assuring you that it wouldn't be difficult to extend to multi-character ones. I don't know if you
believed me or not ... I wouldn't really blame you if you were a bit skeptical. I'll continue to use that
approach in the sessions which follow, because it helps keep complexity away. But I'd like to back up those
assurances, and wrap up this portion of the parser, by showing you just how easy that extension really is.
In the process, we'll also provide for embedded white space. Before you make the next few changes, though,
save the current version of the parser away under another name. I have some more uses for it in the next
installment, and we'll be working with the single-character version.

Most compilers separate out the handling of the input stream into a separate module called the lexical scanner.
The idea is that the scanner deals with all the character-by-character input, and returns the separate units
(tokens) of the stream. There may come a time when we'll want to do something like that, too, but for now
there is no need. We can handle the multi-character tokens that we need by very slight and very local
modifications to GetName and GetNum.

The usual definition of an identifier is that the first character must be a letter, but the rest can be alphanumeric
(letters or numbers). **[snip].

Now, we need to modify function GetName to return a string instead of a character:

**add to Prototypes:
 char *GetName(void);

char *GetName() /* Get an Identifier */
{ char Token[20];
 int ndx=0;

 if(! isalpha(Look))
 { Expected("Name");
 }
 while(isalnum(Look))
 { Token[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Token[ndx] = '\0';
 return Token;
}
/*-------------------------------*/

Similarly, modify GetNum to read:

**change in Prototypes:
 char *GetNum(void);

char *GetNum() /* Get a Number */
{ char Value[10];

 int ndx=0;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 return Value;
}
/*-------------------------------*/

Amazingly enough, that is virtually all the changes required to the parser! The local variable Name in
procedures Ident and Assignment was originally declared as "char", and must now be declared ** char
Name[10]. (Clearly, we could make the string length longer if we chose, but most assemblers limit the length
anyhow.)

void Assignment()
{ char a_string[20];
 char Name[10];

 strcpy(Name, GetName());
 Match('=');
 Expression();
 strcpy(a_string, "lea dx, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 EmitLn("mov [dx], ax");
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{ char a_string[20];
 char Name[10];

 strcpy(Name, GetName());
 if(Look == '(')
 { Match('(');
 Match(')');
 strcpy(a_string, "call ");
 strcat(a_string, Name);
 EmitLn(a_string);
 }
 else
 { strcpy(a_string, "mov ax, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];
 char Value[10];

 if(Look == '(')

 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { Ident();
 }
 else
 { strcpy(Value, GetNum());
 strcpy(a_string, "mov ax, ");
 strcat(a_string, Value);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

Make this change, and then recompile and test. _NOW_ do you believe that it's a simple change?

WHITE SPACE
Before we leave this parser for awhile, let's address the issue of white space. As it stands now, the parser
will barf (or simply terminate) on a single space character embedded anywhere in the input stream. That's
pretty unfriendly behavior. So let's "productionize" the thing a bit by eliminating this last restriction.
The key to easy handling of white space is to come up with a simple rule for how the parser should treat the
input stream, and to enforce that rule everywhere. Up till now, because white space wasn't permitted, we've
been able to assume that after each parsing action, the lookahead character Look contains the next
meaningful character, so we could test it immediately. Our design was based upon this principle.
It still sounds like a good rule to me, so that's the one we'll use. This means that every routine that
advances the input stream must skip over white space, and leave the next non-white character in Look.
Fortunately, because we've been careful to use GetName, GetNum, and Match for most of our input
processing, it is only those three routines (plus Init) that we need to modify.
Not surprisingly, we start with yet another new recognizer routine:

**add to Prototypes:
 int IsWhite(char);

int IsWhite(char ch) /* Recognize White Space */
{ int test=0;

 if((ch == ' ') || (ch == TAB)) x = 1;
 return test;
}
/*-------------------------------*/

We also need a routine that will eat white-space characters, until it finds a non-white one:

**add to Prototypes:
 void SkipWhite(void);

void SkipWhite() /* Skip Over Leading White Space */
{
 while(IsWhite(Look))
 { _GetChar();
 }
}
/*-------------------------------*/

Now, add calls to SkipWhite to Match, GetName, and GetNum as shown below:

void Match(char x) /* Match a Specific Input Character */
{ char string[6];

 if(Look != x)
 { strcpy(string, "\" \"");
 string[1] = x;
 Expected(string);
 }
 else
 { _GetChar();
 SkipWhite();
 }
}
/*-------------------------------*/

char *GetName() /* Get an Identifier */
{ char Token[10];
 int ndx=0;

 if(! isalpha(Look))
 { Expected("Name");
 }
 while(isalnum(Look))
 { Token[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Token[ndx] = '\0';
 SkipWhite();
 return Token;
}
/*-------------------------------*/

char *GetNum() /* Get a Number */
{ char Value[10];
 int ndx=0;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 SkipWhite();
 return Value;
}
/*-------------------------------*/

(Note that I rearranged Match a bit, without changing the functionality.)

Finally, we need to skip over leading blanks where we "prime the pump" in Init:

void Init() /* Initialize */
{
 _GetChar();
 SkipWhite();

}
/*-------------------------------*/

Make these changes and recompile the program. **[snip]. Test the program as always to make sure it works
properly.

Since we've made quite a few changes during this session, I'm reproducing the entire parser below:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* - Constants - */
#define TAB 9
#define BEEP 7

/* - Global Variables - */
 char Look; /* look ahead character */

/* ---- Function Prototypes ---- */
 void _GetChar(void); void Error(char *);
 void _Abort(char *); void Expected(char *);
 void Match(char); char *GetName(void);
 char *GetNum(void); void Emit(char *);
 void EmitLn(char *); void Init(void);
 void Term(void); void Expression(void);
 void Add(void); void Subtract(void);
 void Factor(void); void Multiply(void);
 void Divide(void); int IsAddop(char);
 void Ident(void); void Assignment(void);
 void SkipWhite(void); int IsWhite(char);
/* ---- End Prototypes ---- */

void Assignment()
{ char a_string[20];
 char Name[10];

 strcpy(Name, GetName());
 Match('=');
 Expression();
 strcpy(a_string, "lea di, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 EmitLn("mov [di], ax");
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{ char a_string[20];
 char Name[10];

 strcpy(Name, GetName());
 if(Look == '(')
 { Match('(');
 Match(')');
 strcpy(a_string, "call ");
 strcat(a_string, Name);
 EmitLn(a_string);
 }

 else
 { strcpy(a_string, "mov ax, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

int IsAddop(char ch) /* Recognize an Addop */
{ int rval=0;

 if((ch == '+') || (ch == '-'))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

void Divide() /* Recognize and Translate a Divide */
{
 Match('/');
 Factor();
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("div bx");
}
/*-------------------------------*/

void Multiply() /* Recognize and Translate a Multiply */
{
 Match('*');
 Factor();
 EmitLn("pop bx");
 EmitLn("mul bx");
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];
 char Value[10];

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { Ident();
 }
 else
 { strcpy(Value, GetNum());
 strcpy(a_string, "mov ax, ");
 strcat(a_string, Value);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */

{
 Match('-');
 Term();
 EmitLn("pop bx");
 EmitLn("sub ax, bx");
 EmitLn("neg ax");
}
/*-------------------------------*/

void Add() /* Recognize and Translate an Add */
{
 Match('+');
 Term();
 EmitLn("pop bx");
 EmitLn("add ax, bx");
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
 if(IsAddop(Look))
 { EmitLn("mov ax, 0");
 }
 else
 { Term();
 }
 while(IsAddop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
 Factor();
 while((Look == '*') || (Look == '/'))
 { EmitLn("push ax");
 switch(Look)
 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 default:
 break;
 }
 }
}

/*-------------------------------*/

void main() /* Main Program */
{
 Init();
 Assignment();
 if(Look != '\n')
 { Expected("Newline");
 }
}
/*-------------------------------*/

void Init() /* Initialize */
{
 _GetChar();
 SkipWhite();
}
/*-------------------------------*/

void EmitLn(char *a_string) /* Output a String with Tab and CRLF */
{
 Emit(a_string);
 printf("\n");
}
/*-------------------------------*/

void Emit(char *a_string) /* Output a String with Tab */
{
 printf("\%c %s", TAB, a_string);
}
/*-------------------------------*/

char *GetNum() /* Get a Number */
{ char Value[10];
 int ndx=0;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 SkipWhite();
 return Value;
}
/*-------------------------------*/

char *GetName() /* Get an Identifier */
{ char Token[10];
 int ndx=0;

 if(! isalpha(Look))
 { Expected("Name");
 }
 while(isalnum(Look))
 { Token[ndx] = toupper(Look);

 ndx++;
 _GetChar();
 }
 Token[ndx] = '\0';
 SkipWhite();
 return Token;
}
/*-------------------------------*/

void Match(char x) /* Match a Specific Input Character */
{ char string[6];

 if(Look != x)
 { strcpy(string, "\" \"");
 string[1] = x;
 Expected(string);
 }
 else
 { _GetChar();
 SkipWhite();
 }
}
/*-------------------------------*/

void Expected(char *string) /* Report What Was Expected */
{ char a_string[20];

 strcpy(a_string, string);
 strcat(a_string, " Expected");
 _Abort(a_string);
}
/*-------------------------------*/

void _Abort(char *string) /* Report Error and Halt */
{
 Error(string);
 exit(1);
}
/*-------------------------------*/

void Error(char *string) /* Report an Error */
{
 printf("%c\n", BEEP);
 printf("Error: %s.\n", string);
}
/*-------------------------------*/

void _GetChar() /* Read New Character From Input Stream */
{
 Look = getchar();
}
/*-------------------------------*/

int IsWhite(char ch)
{ int test=0;

 if((ch == ' ') || (ch == TAB)) test = 1;
 return test;
}

/*-------------------------------*/

void SkipWhite() /* Skip Over Leading White Space */
{
 while(IsWhite(Look))
 { _GetChar();
 }
}
/*-------------------------------*/

Now the parser is complete. It's got every feature we can put in a one-line "compiler." Tuck it away in a safe
place. Next time we'll move on to a new subject, but we'll still be talking about expressions for quite awhile.
Next installment, I plan to talk a bit about interpreters as opposed to compilers, and show you how the structure
of the parser changes a bit as we change what sort of action has to be taken. The information we pick up there
will serve us in good stead later on, even if you have no interest in interpreters. See you next time.

INTRODUCTION
In the first three installments of this series, we've looked at parsing and compiling math expressions, and
worked our way gradually and methodically from dealing with very simple one-term, one-character
"expressions" up through more general ones, finally arriving at a very complete parser that could parse and
translate complete assignment statements, with multi-character tokens, embedded white space, and function
calls. This time, I'm going to walk you through the process one more time, only with the goal of interpreting
rather than compiling object code.

Since this is a series on compilers, why should we bother with interpreters? Simply because I want you to see
how the nature of the parser changes as we change the goals. I also want to unify the concepts of the two
types of translators, so that you can see not only the differences, but also the similarities.

Consider the assignment statement

 x = 2 * y + 3

In a compiler, we want the target CPU to execute this assignment at EXECUTION time. The translator itself
doesn't do any arithmetic ... it only issues the object code that will cause the CPU to do it when the code is
executed. For the example above, the compiler would issue code to compute the expression and store the
results in variable x.

For an interpreter, on the other hand, no object code is generated. Instead, the arithmetic is computed
immediately, as the parsing is going on. For the example, by the time parsing of the statement is complete, x
will have a new value.

The approach we've been taking in this whole series is called "syntax-driven translation." As you are aware
by now, the structure of the parser is very closely tied to the syntax of the productions we parse. We have
built **C functions that recognize every language construct. Associated with each of these constructs (and
**functions) is a corresponding "action," which does whatever makes sense to do once a construct has
been recognized. In our compiler so far, every action involves emitting object code, to be executed later at
execution time. In an interpreter, every action involves something to be done immediately.

What I'd like you to see here is that the layout ... the structure ... of the parser doesn't change. It's only the
actions that change. So if you can write an interpreter for a given language, you can also write a compiler,
and vice versa. Yet, as you will see, there ARE differences, and significant ones. Because the actions are
different, the procedures that do the recognizing end up being written differently. Specifically, in the
interpreter the recognizing procedures end up being coded as FUNCTIONS that return numeric values to their
callers. None of the parsing routines for our compiler did that.

Our compiler, in fact, is what we might call a "pure" compiler. Each time a construct is recognized, the object
code is emitted IMMEDIATELY. (That's one reason the code is not very efficient.) The interpreter we'll be

building here is a pure interpreter, in the sense that there is no translation, such as "tokenizing," performed
on the source code. These represent the two extremes of translation. In the real world, translators are
rarely so pure, but tend to have bits of each technique.

I can think of several examples. I've already mentioned one: most interpreters, such as Microsoft BASIC, for
example, translate the source code (tokenize it) into an intermediate form so that it'll be easier to parse real
time.

Another example is an assembler. The purpose of an assembler, of course, is to produce object code, and it
normally does that on a one-to-one basis: one object instruction per line of source code. But almost every
assembler also permits expressions as arguments. In this case, the expressions are always constant
expressions, and so the assembler isn't supposed to issue object code for them. Rather, it "interprets" the
expressions and computes the corresponding constant result, which is what it actually emits as object code.

As a matter of fact, we could use a bit of that ourselves. The translator we built in the previous installment
will dutifully spit out object code for complicated expressions, even though every term in the expression is a
constant. In that case it would be far better if the translator behaved a bit more like an interpreter, and just
computed the equivalent constant result.

There is a concept in compiler theory called "lazy" translation. The idea is that you typically don't just emit
code at every action. In fact, at the extreme you don't emit anything at all, until you absolutely have to. To
accomplish this, the actions associated with the parsing routines typically don't just emit code. Sometimes
they do, but often they simply return information back to the caller. Armed with such information, the caller
can then make a better choice of what to do.

For example, given the statement

 x = x + 3 - 2 - (5 - 4) ,

our compiler will dutifully spit out a stream of 18 instructions to load each parameter into registers, perform
the arithmetic, and store the result. A lazier evaluation would recognize that the arithmetic involving constants
can be evaluated at compile time, and would reduce the expression to

 x = x + 0 .

An even lazier evaluation would then be smart enough to figure out that this is equivalent to

 x = x ,

which calls for no action at all. We could reduce 18 instructions to zero!

Note that there is no chance of optimizing this way in our translator as it stands, because every action takes
place immediately.

Lazy expression evaluation can produce significantly better object code than we have been able to so
far. I warn you, though: it complicates the parser code considerably, because each routine now has to make
decisions as to whether to emit object code or not. Lazy evaluation is certainly not named that because it's
easier on the compiler writer!

Since we're operating mainly on the KISS principle here, I won't go into much more depth on this subject. I just
want you to be aware that you can get some code optimization by combining the techniques of compiling and
interpreting. In particular, you should know that the parsing routines in a smarter translator will generally
return things to their caller, and sometimes expect things as well. That's the main reason for going over
interpretation in this installment.

THE INTERPRETER
OK, now that you know WHY we're going into all this, let's do it. Just to give you practice, we're going to start
over with a bare cradle and build up the translator all over again. This time, of course, we can go a bit faster.

Since we're now going to do arithmetic, the first thing we need to do is to change function GetNum, which up till
now has always returned a character (or string). Now, it's better for it to return an integer. MAKE A
COPY of the cradle (for goodness's sake, don't change the version in Cradle itself!!) and modify GetNum as
follows:**

int GetNum() /* Get a Number */
{ int Value;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 Value = Look - '0';
 _GetChar();
 return Value;
}
/*-------------------------------*/

Now, write the following version of Expression:**

**change Prototypes:
 int Expression(void);

int Expression() /* Parse and Translate an Expression */
{ int value;

 value = GetNum();
 return value;
}
/*-------------------------------*/

Finally, **change the main function to read:

void main() /* Main Program */
{
 Init();
 printf("%d\n", Expression());
}
/*-------------------------------*/

Now compile and test.

All this program does is to "parse" and translate a single integer "expression." As always, you should
make sure that it does that with the digits 0..9, and gives an error message for anything else. Shouldn't take
you very long!

OK, now let's extend this to include addops. Change Expression to read:**

int Expression() /* Parse and Translate an Expression */
{ int Value;

 if(IsAddop(Look))
 { Value = 0;
 }
 else
 { Value = GetNum();
 }
 while(IsAddop(Look))
 { switch(Look)

 { case '+':
 Match('+');
 Value = Value + GetNum();
 break;
 case '-':
 Match('-');
 Value = Value - GetNum();
 break;
 default:
 break;
 }
 }
 return Value;
}
/*-------------------------------*/

The structure of Expression, of course, parallels what we did before, so we shouldn't have too much
trouble debugging it. There's been a SIGNIFICANT development, though, hasn't there? Procedures Add and
Subtract went away! The reason is that the action to be taken requires BOTH arguments of the operation. I
could have chosen to retain the procedures and pass into them the value of the expression to date, which is
Value. But it seemed cleaner to me to keep Value as strictly a local variable, which meant that the code for
Add and Subtract had to be moved in line. This result suggests that, while the structure we had developed was
nice and clean for our simple-minded translation scheme, it probably wouldn't do for use with lazy evaluation.
That's a little tidbit we'll probably want to keep in mind for later.

**as an example try entering: 1+1 or 2-1 or 9+9 or 0-1.

OK, did the translator work?
Then let's take the next step. It's not hard to figure out what procedure Term should now look like. Change
every call to GetNum in function Expression to a call to Term, and then enter the following form for
Term:**

int Term() /* Parse and Translate a Math Term */
{ int Value;

 Value = GetNum();
 while((Look == '*') || (Look == '/'))
 { switch(Look)
 { case '*':
 Match('*');
 Value = Value * GetNum();
 break;
 case '/':
 Match('/');
 Value = Value / GetNum();
 break;
 default:
 break;
 }
 }
 return Value;
}
/*-------------------------------*/

Now, **recompile and try it out. **Try: 1+2*3 or 9/3

Don't forget two things: first, we're dealing with integer division, so, for example, 1/3 should come out zero.
Second, even though we can output multi-digit results, our input is still restricted to single digits.

That seems like a silly restriction at this point, since we have already seen how easily function GetNum can be
extended. So let's go ahead and fix it right now. The new version is:**

int GetNum() /* Get a Number */
{ int Value=0;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { Value = 10 * Value + Look - '0';
 _GetChar();
 }
 return Value;
}
/*-------------------------------*/

**Compile this version and try: 10*10 or 100+2 or 100/10 .

If you've compiled and tested this version of the interpreter, the next step is to install function Factor,
complete with parenthesized expressions. We'll hold off a bit longer on the variable names. First, change
the references to GetNum, in function Term, so that they call Factor instead. Now code the following
version of Factor:**

**to Prototypes:
 int Factor(void);

int Factor() /* Parse and Translate a Math Factor */
{ int value;

 if(Look == '(')
 { Match('(');
 value = Expression();
 Match(')');
 }
 else
 { value = GetNum();
 }
 return value;
}
/*-------------------------------*/

**Recompile and try: (1+2)*3 or 14*(4+3) or 10*(2*(2+3)) .

That was pretty easy, huh? We're rapidly closing in on a useful interpreter.

A LITTLE PHILOSOPHY
Before going any further, there's something I'd like to call to your attention. It's a concept that we've been
making use of in all these sessions, but I haven't explicitly mentioned it up till now. I think it's time, because it's
a concept so useful, and so powerful, that it makes all the difference between a parser that's trivially easy,
and one that's too complex to deal with.

In the early days of compiler technology, people had a terrible time figuring out how to deal with things like
operator precedence ... the way that multiply and divide operators take precedence over add and subtract,
etc. I remember a colleague of some thirty years ago, and how excited he was to find out how to do it. The
technique used involved building two stacks, upon which you pushed each operator or operand. Associated
with each operator was a precedence level, and the rules required that you only actually performed an
operation ("reducing" the stack) if the precedence level showing on top of the stack was correct. To make life

more interesting, an operator like ')' had different precedence levels, depending upon whether or not it was
already on the stack. You had to give it one value before you put it on the stack, and another to decide when to
take it off. Just for the experience, I worked all of this out for myself a few years ago, and I can tell you that
it's very tricky.

We haven't had to do anything like that. In fact, by now the parsing of an arithmetic statement should seem
like child's play. How did we get so lucky? And where did the precedence stacks go?

A similar thing is going on in our interpreter above. You just KNOW that in order for it to do the computation
of arithmetic statements (as opposed to the parsing of them), there have to be numbers pushed onto a stack
somewhere. But where is the stack?

Finally, in compiler textbooks, there are a number of places where stacks and other structures are
discussed. In the other leading parsing method (LR), an explicit stack is used. In fact, the technique is very
much like the old way of doing arithmetic expressions. Another concept is that of a parse tree. Authors like to
draw diagrams of the tokens in a statement, connected into a tree with operators at the internal nodes.
Again, where are the trees and stacks in our technique? We haven't seen any. The answer in all cases is that
the structures are implicit, not explicit. In any computer language, there is a stack involved every time you
call a subroutine. Whenever a subroutine is called, the return address is pushed onto the CPU stack. At the
end of the subroutine, the address is popped back off and control is transferred there. In a recursive language
such as **C, there can also be local data pushed onto the stack, and it, too, returns when it's needed.

For example, function Expression contains a local parameter called Value, which it fills by a call to Term.
Suppose, in its next call to Term for the second argument, that Term calls Factor, which recursively calls
Expression again. That "instance" of Expression gets another value for its copy of Value. What happens to
the first Value? Answer: it's still on the stack, and will be there again when we return from our call
sequence.

In other words, the reason things look so simple is that we've been making maximum use of the resources of
the language. The hierarchy levels and the parse trees are there, all right, but they're hidden within the
structure of the parser, and they're taken care of by the order with which the various procedures are called.
Now that you've seen how we do it, it's probably hard to imagine doing it any other way. But I can tell you that it
took a lot of years for compiler writers to get that smart. The early compilers were too complex too imagine.
Funny how things get easier with a little practice.

The reason I've brought all this up is as both a lesson and a warning. The lesson: things can be easy when
you do them right. The warning: take a look at what you're doing. If, as you branch out on your own, you
begin to find a real need for a separate stack or tree structure, it may be time to ask yourself if you're looking at
things the right way. Maybe you just aren't using the facilities of the language as well as you could be.

The next step is to add variable names. Now, though, we have a slight problem. For the compiler, we had no
problem in dealing with variable names ... we just issued the names to the assembler and let the rest of the
program take care of allocating storage for them. Here, on the other hand, we need to be able to fetch the
values of the variables and return them as the return values of Factor. We need a storage mechanism for
these variables.

Back in the early days of personal computing, Tiny BASIC lived. It had a grand total of 26 possible
variables: one for each letter of the alphabet. This fits nicely with our concept of single-character tokens, so
we'll try the same trick. In the beginning of your interpreter, just after the declaration of variable Look,
insert the line:**

int Table[26];

We also need to initialize the array, so add this procedure:**

**add to Prototypes:
 void InitTable(void);

void InitTable() /* Initialize the Variable Area */

{ int i;

 for(i=0; i<26; i++)
 { Table[i] = 0;
 }
}
/*-------------------------------*/

You must also insert a call to InitTable, in procedure Init.
DON'T FORGET to do that, or the results may surprise you!
**
void Init() /* Initialize */
{
 InitTable();
 _GetChar();
 SkipWhite();
}
/*-------------------------------*/

Now that we have an array of variables, we can modify Factor to use it. Since we don't have a way (so far) to
set the variables, Factor will always return zero values for them, but let's go ahead and extend it anyway.
Here's the new version:**

int Factor() /* Parse and Translate a Math Factor */
{ int value;

 if(Look == '(')
 { Match('(');
 value = Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { value = Table[GetName()];
 }
 else
 { value = GetNum();
 }
 return value;
}
/*-------------------------------*/

**Make these changes as well:

**to Prototypes:
 int GetName(void);

int GetName() /* Get an Identifier */
{ int name;

 if(! isalpha(Look))
 { Expected("Name");
 }
 name = toupper(Look) - 'A';
 _GetChar();
 return name;
}
/*-------------------------------*/

As always, compile and test this version of the program.
**Try: 1+2+a or a*b or a*b/2 .

Even though all the variables are now zeros, at least we can correctly parse the complete expressions, as well
as catch any badly formed expressions.

I suppose you realize the next step: we need to do an assignment statement so we can put something INTO
the variables. For now, let's stick to one-liners, though we will soon be handling multiple statements.
The assignment statement parallels what we did before:**

void Assignment()
{ int Name;

 Name = GetName();
 Match('=');
 Table[Name] = Expression();
}
/*-------------------------------*/

To test this, I added a temporary write statement in the main program, **

void main() /* Main Program */
{
 Init();
 Assignment();
 printf("%d\n", Table[0]);

/* printf("%d\n", Expression());*/
 if(Look != '\n')
 { Expected("Newline");
 }
}
/*-------------------------------*/

to print out the value of A. Then I tested it with various assignments to it.
**Try: a=1 or a=100 or a=-1 .

Of course, an interpretive language that can only accept a single line of program is not of much value. So we're
going to want to handle multiple statements. This merely means putting a loop around the call to
Assignment. So let's do that now. But what should be the loop exit criterion? Glad you asked, because it
brings up a point we've been able to ignore up till now.

One of the most tricky things to handle in any translator is to determine when to bail out of a given construct
and go look for something else. This hasn't been a problem for us so far because we've only allowed for a
single kind of construct ... either an expression or an assignment statement. When we start adding loops
and different kinds of statements, you'll find that we have to be very careful that things terminate properly. If we
put our interpreter in a loop, we need a way to quit. Terminating on a newline is no good, because that's what
sends us back for another line. We could always let an unrecognized character take us out, but that would
cause every run to end in an error message, which certainly seems uncool.

What we need is a termination character. I vote for Pascal's ending period ('.'). A minor complication is
that Turbo ends every normal line with TWO characters, the carriage return (CR) and line feed (LF). At the
end of each line, we need to eat these characters before processing the next one. A natural way to do this
would be with procedure Match, except that Match's error message prints the character, which of course for
the CR and/or LF won't look so great. What we need is a special procedure for this, which we'll no doubt be
using over and over. Here it is:**

**add to Prototypes:
 void NewLine(void);

void NewLine() /* Recognize and Skip Over a Newline */
{
 if(Look == '\n')
 { _GetChar();
 }
}
/*-------------------------------*/

Insert this procedure at any convenient spot ... I put mine just after Match. Now, rewrite the main program to
look like this: **

void main() /* Main Program */
{
 Init();
 while(Look != '.')
 { Assignment();
 NewLine();
 }
}
/*-------------------------------*/

**Compile and test this, try entering:
a=1
a=2+2
a=100/10
. <period>

if it's working okay, the results are not displayed, it just advances to the next input line, until the period is
entered.

Note that the test for a CR is now gone, and that there are also no error tests within NewLine itself. That's
OK, though ... whatever is left over in terms of bogus characters will be caught at the beginning of the next
assignment statement.

Well, we now have a functioning interpreter. It doesn't do us a lot of good, however, since we have no way
to read data in or write it out. Sure would help to have some I/O!

Let's wrap this session up, then, by adding the I/O routines. Since we're sticking to single-character tokens,
I'll use '?' to stand for a read statement, and '!' for a write, with the character immediately following them to
be used as a one-token "parameter list." Here are the routines:**

**add to Prototypes:
 void Input(void);
 void Output(void);

void Input() /* Input Routine */
{
 Match('?');
 Table[GetName] = GetNum();
}
/*-------------------------------*/

void Output() /* Output Routine */
{
 Match('!');
 printf("%d\n", Table[GetName()]);

}

/*-------------------------------*/

**Compile and make sure it's working. Try entering:
?a10?b3
c=a*b
!c.

or:
?z1?y2?x3
a=x*y+z
!a.

They aren't very fancy, I admit ... no prompt character on input, for example ... but they get the job done.

The corresponding changes in the main program are shown below. Note that we use the usual trick of a case
statement based upon the current lookahead character, to decide what to do.**

void main() /* Main Program */
{
 Init();
 while(Look != '.')
 { switch(Look)
 { case '?':
 Input();
 break;
 case '!':
 Output();
 break;
 default:
 Assignment();
 break;
 }
 NewLine();
 }
}
/*-------------------------------*/

You have now completed a real, working interpreter. It's pretty sparse, but it works just like the "big boys." It
includes three kinds of program statements (and can tell the difference!), 26 variables, and I/O statements.
The only things that it lacks, really, are control statements, subroutines, and some kind of program editing
function. The program editing part, I'm going to pass on. After all, we're not here to build a product, but to
learn things. The control statements, we'll cover in the next installment, and the subroutines soon after. I'm
anxious to get on with that, so we'll leave the interpreter as it stands.

I hope that by now you're convinced that the limitation of single-character names and the processing of white
space are easily taken care of, as we did in the last session. This time, if you'd like to play around with these
extensions, be my guest ... they're "left as an exercise for the student." See you next time.

INTRODUCTION
In the first four installments of this series, we've been concentrating on the parsing of math expressions
and assignment statements. In this installment, we'll take off on a new and exciting tangent: that of
parsing and translating control constructs such as IF statements.

This subject is dear to my heart, because it represents a turning point for me. I had been playing with the
parsing of expressions, just as we have done in this series, but I still felt that I was a LONG way from being
able to handle a complete language. After all, REAL languages have branches and loops and subroutines and
all that. perhaps you've shared some of the same thoughts. Awhile back, though, I had to produce control

constructs for a structured assembler preprocessor I was writing. Imagine my surprise to discover that it was
far easier than the expression parsing I had already been through. I remember thinking, "Hey! This is
EASY!" After we've finished this session, I'll bet you'll be thinking so, too.

THE PLAN
In what follows, we'll be starting over again with a bare cradle, and as we've done twice before now, we'll build
things up one at a time. We'll also be retaining the concept of single-character tokens that has served us so
well to date. This means that the "code" will look a little funny, with 'i' for IF, 'w' for WHILE, etc. But it helps us
get the concepts down pat without fussing over lexical scanning. Fear not ... eventually we'll see
something looking like "real" code.

I also don't want to have us get bogged down in dealing with statements other than branches, such as the
assignment statements we've been working on. We've already demonstrated that we can handle them, so
there's no point carrying them around as excess baggage during this exercise. So what I'll do instead is to use
an anonymous statement, "other", to take the place of the non-control statements and serve as a place-holder
for them. We have to generate some kind of object code for them (we're back into compiling, not
interpretation), so for want of anything else I'll just echo the character input.

**Note: begin a new 'Cradle.c' with these functions, from Chapter 3:
/* - Function Prototypes - */
 void _GetChar(void); void Error(char *);
 void _Abort(char *); void Expected(char *);
 void Match(char); char GetName(void);
 void Emit(char *); void EmitLn(char *);
 void Init(void); void SkipWhite(void);
 int IsWhite(char);
/* - End Prototypes - */

OK, then, starting with yet another copy of the cradle, let's define the procedure:**

**Function Prototypes:
 void Other(void);

void Other() /* Recognize and Translate an "Other" */
{ char name[2]= {0,0};

 name[0] = GetName();
 EmitLn(name);
}
/*-------------------------------*/

Now include a call to it in the main program, thus:**

void main() /* Main Program */
{
 Init();
 Other();
}
/*-------------------------------*/

**function GetName should look like this:

char GetName() /* Get an Identifier */
{ char Name;

 if(! isalpha(Look))
 { Expected("Name");
 }
 Name = toupper(Look);

 _GetChar();
 return Name;
}
/*-------------------------------*/

Run the program and see what you get. Not very exciting, is it? But hang in there, it's a start, and things will get
better.

The first thing we need is the ability to deal with more than one statement, since a single-line branch is pretty
limited. We did that in the last session on interpreting, but this time let's get a little more formal. Consider the
following BNF:

 <program> = <block> END

 <block> = [<statement>]*

This says that, for our purposes here, a program is defined as a block, followed by an END statement. A block,
in turn, consists of zero or more statements. We only have one kind of statement, so far.

What signals the end of a block? It's simply any construct that isn't an "other" statement. For now, that
means only the END statement.

Armed with these ideas, we can proceed to build up our parser. The code for a program is:**

**add to Prototypes:
 void DoProgram(void);
 void Block(void);

void DoProgram() /* Parse and Translate a Program */
{
 Block();
 if(Look != 'e')
 { Expected("end");
 }
 EmitLn("END");
}
/*-------------------------------*/

Notice that I've arranged to emit an "END" command to the assembler, which sort of punctuates the
output code, and makes sense considering that we're parsing a complete program here.

The code for Block is:**

void Block() /* Recognize and Translate a Statement Block */
{
 while(Look != 'e')
 { Other();
 }
}
/*-------------------------------*/

(From the form of the procedure, you just KNOW we're going to be adding to it in a bit!)

OK, enter these routines into your program. Replace the call to Other in the main program, by a call to
DoProgram. **

void main() /* Main Program */
{
 Init();

 DoProgram();
}
/*-------------------------------*/

Now try it and see how it works. Well, it's still not much, but we're getting closer.

**Try entering: abcde

SOME GROUNDWORK
Before we begin to define the various control constructs, we need to lay a bit more groundwork. First, a word of
warning: I won't be using the same syntax for these constructs as you're familiar with from Pascal or C. For
example, the Pascal syntax for an IF is:

IF <condition> THEN <statement>

(where the statement, of course, may be compound).

The C version is similar:

IF (<condition>) <statement>

Instead, I'll be using something that looks more like Ada:

IF <condition> <block> ENDIF

In other words, the IF construct has a specific termination symbol. This avoids the dangling-else of Pascal
and C and also precludes the need for the brackets {} or begin-end. The syntax I'm showing you here, in fact,
is that of the language KISS that I'll be detailing in later installments. The other constructs will also be slightly
different. That shouldn't be a real problem for you. Once you see how it's done, you'll realize that it really
doesn't matter so much which specific syntax is involved. Once the syntax is defined, turning it into code
is straightforward.

Now, all of the constructs we'll be dealing with here involve transfer of control, which at the assembler-
language level means conditional and/or unconditional branches. For example, the simple IF statement

IF <condition> A ENDIF B

must get translated into

Branch if NOT condition to L
A

L: B
...

It's clear, then, that we're going to need some more procedures to help us deal with these branches. I've
defined two of them below. Procedure NewLabel generates unique labels. This is done via the simple
expedient of calling every label 'Lnn', where nn is a label number starting from zero. Procedure PostLabel
just outputs the labels at the proper place.
Here are the two routines:**

**add to Prototypes:
 char *NewLabel(void);
 void PostLabel(char *);

char *NewLabel() /* Generate a Unique Label */
{ char S[6];
 static char Label[7];

 strcpy(Label, "L");
 sprintf(S, "%d", LCount);
 strcat(Label, S);
 LCount++;
 return Label;
}
/*-------------------------------*/

void PostLabel(char *string) /* Post a Label To Output */
{
 printf("%s:", string);
}
/*-------------------------------*/

Notice that we've added a new global variable, LCount, so you need to change the VAR declarations at the
top of the program to look like this:**

/* - Global Variables - */
 char Look; /* look ahead character */
 int LCount; /* Label Counter */

Also, add the following extra initialization to Init:

 LCount = 0;

(DON'T forget that, or your labels can look really strange!)**

void Init() /* Initialize */
{
 LCount = 0;
 _GetChar();
 SkipWhite();
}
/*-------------------------------*/

At this point I'd also like to show you a new kind of notation. If you compare the form of the IF statement
above with the assembler code that must be produced, you can see that there are certain actions associated
with each of the keywords in the statement:

IF: First, get the condition and issue the code for it.
 Then, create a unique label and emit a branch if false.

ENDIF: Emit the label.

These actions can be shown very concisely if we write the syntax this way:

IF
<condition> { Condition;

L = NewLabel;
Emit(Branch False to L); }

<block>
ENDIF { PostLabel(L) }

This is an example of syntax-directed translation. We've been doing it all along ... we've just never written it
down this way before. The stuff in curly brackets represents the ACTIONS to be taken. The nice part about
this representation is that it not only shows what we have to recognize, but also the actions we have to
perform, and in which order. Once we have this syntax, the code almost writes itself.

About the only thing left to do is to be a bit more specific about what we mean by "Branch if false."

I'm assuming that there will be code executed for <condition> that will perform Boolean algebra and
compute some result. It should also set the condition flags corresponding to that result. Now, the usual
convention for a Boolean variable is to let 0000 represent "false," and anything else (some use FFFF, some
0001) represent "true."

On the **x86 the condition flags are set whenever any data is ** calculated. If the data is a 0000
(corresponding to a false condition, remember), the zero flag will be set. The code for "Branch on zero" is JE or
JZ. So for our purposes here,

 JE or JZ <=> Branch if false
JNE or JNZ <=> Branch if true

It's the nature of the beast that most of the branches we see will be JZ's ... we'll be branching AROUND
the code that's supposed to be executed when the condition is true.

THE IF STATEMENT
With that bit of explanation out of the way, we're finally ready to begin coding the IF-statement parser. In fact,
we've almost already done it! As usual, I'll be using our single-character approach, with the character 'i' for IF,
and 'e' for ENDIF (as well as END ... that dual nature causes no confusion). I'll also, for now, skip
completely the character for the branch condition, which we still have to define. The code for DoIf is:**

**add to Prototypes:
 void DoIf(void);
 void Condition(void);

void DoIf() /* Recognize and Translate an IF Construct */
{ char Label[7], a_string[20];

 Match('i');
 strcpy(Label, NewLabel());
 Condition();
 strcpy(a_string, "jz ");
 strcat(a_string, Label);
 EmitLn(a_string);
 Block();
 Match('e');
 PostLabel(Label);
}
/*-------------------------------*/

Add this routine to your program, and change Block to reference it as follows:**

void Block() /* Recognize and Translate a Statement Block */
{
 while(Look != 'e')
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 default:
 Other();
 break;
 }
 }
}

/*-------------------------------*/

Notice the reference to procedure Condition. Eventually, we'll write a routine that can parse and translate
any Boolean condition we care to give it. But that's a whole installment by itself (the next one, in fact). For
now, let's just make it a dummy that emits some text. Write the following routine:**

void Condition() /* Parse and Translate a Boolean Condition */
{ /* This version is a dummy */
 EmitLn("<condition>");
}
/*-------------------------------*/

Insert this procedure in your program just before DoIf. Now **compile and run the program. Try a string like:

aibece

As you can see, the parser seems to recognize the construct and inserts the object code at the right places.
Now try a set of nested IF's, like

aibicedefe

It's starting to look real, eh?

Now that we have the general idea (and the tools such as the notation and the procedures NewLabel and
PostLabel), it's a piece of cake to extend the parser to include other constructs. The first (and also one of the
trickiest) is to add the ELSE clause to IF. The BNF is

IF <condition> <block> [ELSE <block>] ENDIF

The tricky part arises simply because there is an optional part, which doesn't occur in the other constructs.

The corresponding output code should be:**

<condition>
JNZ L1
<block>
JMP L2

L1: <block>
L2: ...

This leads us to the following syntax-directed translation:**

IF
<condition> { L1 = NewLabel;

 L2 = NewLabel;
 Emit(JNZ L1) }

<block>
ELSE { Emit(JMP L2);

 PostLabel(L1) }
<block>
ENDIF { PostLabel(L2) }

Comparing this with the case for an ELSE-less IF gives us a clue as to how to handle both situations. The
code below does it. (Note that I use an 'l' for the ELSE, since 'e' is otherwise occupied):**

void DoIf() /* Recognize and Translate an IF Construct */
{ char a_string[20];
 char L1[7], L2[7];

 Match('i');
 Condition();
 strcpy(L1, NewLabel());
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 strcpy(L2, L1);
 Block();
 if(Look == 'l')
 { Match('l');
 strcpy(L2, NewLabel());
 strcpy(a_string, "jmp ");
 strcat(a_string, L2);
 EmitLn(a_string);
 PostLabel(L1);
 Block();
 }
 Match('e');
 PostLabel(L2);
}
/*-------------------------------*/

**Additionally, make this change to function Block:

void Block() /* Recognize and Translate a Statement Block */
{
 while(strchr("el", Look) == 0)
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 default:
 Other();
 break;
 }
 }
}
/*-------------------------------*/

There you have it. A complete IF parser/translator, in 19 lines of code.
**Compile and give it a try now. Try something like:

aiblcede

Did it work? Now, just to be sure we haven't broken the ELSE-less case, try:

aibece

Now try some nested IF's. Try anything you like, including some badly formed statements. Just remember
that 'e' is not a legal "other" statement.
**Try: aiblcidlfegehe
 or: aibicldeflgehe
 or: aiblcediflgehe

THE WHILE STATEMENT

The next type of statement should be easy, since we already have the process down pat. The syntax I've
chosen for the WHILE statement is:

WHILE <condition> <block> ENDWHILE

I know, I know, we don't REALLY need separate kinds of terminators for each construct ... you can see that
by the fact that in our one-character version, 'e' is used for all of them. But I also remember MANY debugging
sessions in Pascal, trying to track down a wayward END that the compiler obviously thought I meant to put
somewhere else. It's been my experience that specific and unique keywords, although they add to the
vocabulary of the language, give a bit of error-checking that is worth the extra work for the compiler writer.

Now, consider what the WHILE should be translated into. It should be:

L1: <condition>
JNZ L2
<block>
JMP L1

L2:

As before, comparing the two representations gives us the actions needed at each point.

WHILE { L1 = NewLabel;
PostLabel(L1) }

<condition> { Emit(JNZ L2) }
<block>
ENDWHILE { Emit(JMP L1);

PostLabel(L2) }

The code follows immediately from the syntax:**

**Add to Prototypes:
 void DoWhile(void);

void DoWhile() /* Parse and Translate a WHILE Statement */
{ char a_string[20];
 char L1[7], L2[7];

 Match('w');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 PostLabel(L1);
 Condition();
 strcpy(a_string, "jnz ");
 strcat(a_string, L2);
 EmitLn(a_string);
 Block();
 Match('e');
 strcpy(a_string, "jmp ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
}
/*-------------------------------*/

Since we've got a new statement, we have to add a call to it within function Block:**

void Block() /* Recognize and Translate a Statement Block */
{

 while(strchr("el", Look) == 0)
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 default:
 Other();
 break;
 }
 }
}
/*-------------------------------*/

No other changes are necessary.
OK, **compile and try the new program.
**Try: awbee

awbicldefege

Note that this time, the <condition> code is INSIDE the upper label, which is just where we wanted it. Try
some nested loops. Try some loops within IF's, and some IF's within loops. If you get a bit confused as to
what you should type, don't be discouraged: you write bugs in other languages, too, don't you? It'll look a lot
more meaningful when we get full keywords.

I hope by now that you're beginning to get the idea that this really IS easy. All we have to do to accomodate
a new construct is to work out the syntax-directed translation of it. The code almost falls out from there, and
it doesn't affect any of the other routines. Once you've gotten the feel of the thing, you'll see that you can add
new constructs about as fast as you can dream them up.

THE LOOP STATEMENT
We could stop right here, and have a language that works. It's been shown many times that a high-order
language with only two constructs, the IF and the WHILE, is sufficient to write structured code. But we're on
a roll now, so let's richen up the repertoire a bit.

This construct is even easier, since it has no condition test at all ... it's an infinite loop. What's the point of such
a loop? Not much, by itself, but later on we're going to add a BREAK command, that will give us a way out.
This makes the language considerably richer than Pascal, which has no break, and also avoids the funny
WHILE(1) or WHILE TRUE of C and Pascal.
The syntax is simply

LOOP <block> ENDLOOP

and the syntax-directed translation is:

LOOP { L = NewLabel;
PostLabel(L) }

<block>
ENDLOOP { Emit(JMP L }

The corresponding code is shown below. Since I've already used 'l' for the ELSE, I've used the last letter,
'p', as the "keyword" this time.

**Add to Prototypes:
 void DoLoop(void);

void DoLoop() /* Parse and Translate a LOOP Statement */

{ char Label[7], a_string[20];

 Match('p');
 strcpy(Label, NewLabel());
 PostLabel(Label);
 Block();
 Match('e');
 strcpy(a_string, "jmp ");
 strcat(a_string, Label);
 EmitLn(a_string);
}
/*-------------------------------*/

When you insert this routine, don't forget to add a line in Block to call it.**

void Block() /* Recognize and Translate a Statement Block */
{
 while(strchr("el", Look) == 0)
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 case 'p':
 DoLoop();
 break;
 default:
 Other();
 break;
 }
 }
}
/*-------------------------------*/

**Compile and try:
apbcdefe
aipbcdfeege

REPEAT-UNTIL
Here's one construct that I lifted right from Pascal. The syntax is

REPEAT <block> UNTIL <condition> ,

and the syntax-directed translation is:

REPEAT { L = NewLabel;
PostLabel(L) }

<block>
UNTIL
<condition> { Emit(JNZ L) }

As usual, the code falls out pretty easily:**

**Add to Prototypes:
 void DoRepeat(void);

void DoRepeat() /* Parse and Translate a REPEAT Statement */
{ char Label[7], a_string[20];

 Match('r');
 strcpy(Label, NewLabel());
 PostLabel(Label);
 Block();
 Match('u');
 Condition();
 strcpy(a_string, "jnz ");
 strcat(a_string, Label);
 EmitLn(a_string);
}
/*-------------------------------*/

As before, we have to add the call to DoRepeat within Block. This time, there's a difference, though. I
decided to use 'r' for REPEAT (naturally), but I also decided to use 'u' for UNTIL. This means that the 'u' must
be added to the set of characters in the while-test. These are the characters that signal an exit from the
current block ... the "follow" characters, in compiler jargon.**
void Block() /* Recognize and Translate a Statement Block */
{
 while(strchr("elu", Look) == 0)
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 case 'p':
 DoLoop();
 break;
 case 'r':
 DoRepeat();
 break;
 default:
 Other();
 break;
 }
 }
}
/*-------------------------------*/

**Recompile and try:
arbcdufee
aiblcrdufege
aiblcrduee

THE FOR LOOP

The FOR loop is a very handy one to have around, but it's a bear to translate. That's not so much because the
construct itself is hard ... it's only a loop after all ... but simply because it's hard to implement in assembler
language. Once the code is figured out, the translation is straightforward enough.

C fans love the FOR-loop of that language (and, in fact, it's easier to code), but I've chosen instead a syntax

very much like the one from good ol' BASIC:

FOR <ident> = <expr1> TO <expr2> <block> ENDFOR

The translation of a FOR loop can be just about as difficult as you choose to make it, depending upon the
way you decide to define the rules as to how to handle the limits. Does expr2 get evaluated every time through
the loop, for example, or is it treated as a constant limit? Do you always go through the loop at least once,
as in FORTRAN, or not? It gets simpler if you adopt the point of view that the construct is equivalent to:

 <ident> = <expr1>
 TEMP = <expr2>
 WHILE <ident> <= TEMP
 <block>
 ENDWHILE

Notice that with this definition of the loop, <block> will not be executed at all if <expr1> is initially larger than
<expr2>.

The **code needed to do this is trickier than anything we've done so far. I had a couple of tries at it, putting
both the counter and the upper limit on the stack, both in registers, etc. I finally arrived at a hybrid
arrangement, in which the loop counter is in memory (so that it can be accessed within the loop), and the upper
limit is on the stack. The translated code came out like this:**

<ident> get name of loop counter
<expr1> get initial value
SUB <ident>, 1 predecrement it
<expr1> get upper limit
PUSH AX save it on stack

L1: ADD <ident>, 1 bump the counter
XOR AX, AX clear AX
MOV AL, <ident> get new value
MOV SI, SP get stack pointer
CMP AX, [SI] check for range
JGE L2 skip out if AX > [SI]
<block>
JMP L1 loop for next pass

L2: ADD SP, 2 clean up the stack

Wow! That seems like a lot of code ... the line containing <block> seems to almost get lost. But that's the
best I could do with it. I guess it helps to keep in mind that it's really only sixteen words, after all. If anyone
else can optimize this better, please let me know.

Still, the parser routine is pretty easy now that we have the code:**

**Add to Prototypes:
 void DoFor(void);
 void Expression(void);

void DoFor() /* Parse and Translate a FOR Statement */
{ char a_string[20];
 char Name, L1[7], L2[7];

 Match('f');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 Name = GetName();
 Match('=');
 Expression();

 strcpy(a_string, "sub , 1");
 a_string[5] = Name;
 EmitLn(a_string);
 Expression();
 EmitLn("push ax");
 PostLabel(L1);
 strcpy(a_string, "add , 1");
 a_string[5] = Name;
 EmitLn(a_string);
 EmitLn("xor ax, ax");
 strcpy(a_string, "mov al, ");
 a_string[9] = Name;
 EmitLn(a_string);
 EmitLn("mov si, sp");
 EmitLn("cmp ax, [si]");
 strcpy(a_string, "jge ");
 strcat(a_string, L2);
 EmitLn(a_string);
 Block();
 Match('e');
 strcpy(a_string, "jmp ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
 EmitLn("add sp, 2");
}
/*-------------------------------*/

Since we don't have expressions in this parser, I used the same trick as for Condition, and wrote the routine**

void Expression() /* Parse and Translate an Expression */
{ /* This version is a dummy */
 EmitLn("<expr>");
}
/*-------------------------------*/

Once again, don't forget to add the call in Block.

 case 'f':
 DoFor();
 break;
 default:

**Recompile and give it a try. Since we don't have any input for the dummy version of Expression, a typical
input line would look something like**

afx=bece

Well, it DOES generate a lot of code, doesn't it? But at least it's the RIGHT code.

THE DO STATEMENT
All this made me wish for a simpler version of the FOR loop. The reason for all the code above is the need
to have the loop counter accessible as a variable within the loop. If all we need is a counting loop to make us
go through something a specified number of times, but don't need access to the counter itself, there is a
much easier solution. ** For good measure, let's add this construct, too. This will be the last of our loop
structures.
The syntax and its translation is:**

DO
<expr> { Emit(SUB AX, 1);
 L = NewLabel;
 PostLabel(L);

 L: Emit(PUSH AX) }
<block>
ENDDO { Emit(POP AX);
 Emit(DEC AX);
 Emit(JNZ L);}

That's quite a bit simpler! The loop will execute <expr> times. Here's the code:**

**Add to Prototypes:
 void Dodo(void);

void Dodo() /* Parse and Translate a DO Statement */
{ char L1[7], a_string[20];

 Match('d');
 strcpy(L1, NewLabel());
 Expression();
 EmitLn("sub ax, 1");
 PostLabel(L1);
 EmitLn("push ax");
 Block();
 EmitLn("pop ax");
 EmitLn("dec ax");
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
}
/*-------------------------------*/

Once again, don't forget to add the call in Block.

 case 'd':
 Dodo();
 break;
 default:

Recompile and give it a try using:

adBLOCKe

I think you'll have to agree, that's a whole lot simpler than the classical FOR. Still, each construct has its place.

THE BREAK STATEMENT
Earlier I promised you a BREAK statement to accompany LOOP. This is one I'm sort of proud of. On the face
of it a BREAK seems really tricky. My first approach was to just use it as an extra terminator to Block, and
split all the loops into two parts, just as I did with the ELSE half of an IF. That turns out not to work, though,
because the BREAK statement is almost certainly not going to show up at the same level as the loop itself.
The most likely place for a BREAK is right after an IF, which would cause it to exit to the IF construct, not the
enclosing loop. WRONG. The BREAK has to exit the inner LOOP, even if it's nested down into several levels
of IFs.

My next thought was that I would just store away, in some global variable, the ending label of the innermost
loop. That doesn't work either, because there may be a break from an inner loop followed by a break from

an outer one. Storing the label for the inner loop would clobber the label for the outer one. So the global
variable turned into a stack. Things were starting to get messy.

Then I decided to take my own advice. Remember in the last session when I pointed out how well the
implicit stack of a recursive descent parser was serving our needs? I said that if you begin to see the need
for an external stack you might be doing something wrong. Well, I was. It is indeed possible to let the
recursion built into our parser take care of everything, and the solution is so simple that it's surprising.

The secret is to note that every BREAK statement has to occur within a block ... there's no place else for it to
be. So all we have to do is to pass into Block the exit address of the innermost loop. Then it can pass the
address to the routine that translates the break instruction. Since an IF statement doesn't change the loop
level, procedure DoIf doesn't need to do anything except pass the label into ITS blocks (both of them). Since
loops DO change the level, each loop construct simply ignores whatever label is above it and passes its own
exit label along.

All this is easier to show you than it is to describe. I'll demonstrate with the easiest loop, which is LOOP:**

void DoLoop()
{ char L1[7], L2[7], a_string[20];

 Match('p');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 PostLabel(L1);
 Block(L2);
 Match('e');
 strcpy(a_string, "jmp ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
}
/*-------------------------------*/

Notice that DoLoop now has TWO labels, not just one. The second is to give the BREAK instruction a target to
jump to. If there is no BREAK within the loop, we've wasted a label and cluttered up things a bit, but there's
no harm done.

Note also that Block now has a parameter, which for loops will always be the exit address. The new version of
Block is:**

**Change Prototypes:
 void Block(char *);
 void DoIf(char *);
 void DoBreak(char *);

void Block(char *label) /* Recognize and Translate a Statement Block */
{
 while(strchr("elu", Look) == 0)
 { switch(Look)
 { case 'i':
 DoIf(label);
 break;
 case 'w':
 DoWhile();
 break;
 case 'p':
 DoLoop();
 break;

 case 'r':
 DoRepeat();
 break;
 case 'f':
 DoFor();
 break;
 case 'd':
 Dodo();
 break;
 case 'b':
 DoBreak(label);
 break;
 default:
 Other();
 break;
 }
 }
}
/*-------------------------------*/

Again, notice that all Block does with the label is to pass it into DoIf and DoBreak. The loop constructs
don't need it, because they are going to pass their own label anyway.

The new version of DoIf is:**

void DoIf(char *label) /* Recognize and Translate an IF Construct */
{ char a_string[20];
 char L1[7], L2[7];

 Match('i');
 Condition();
 strcpy(L1, NewLabel());
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 strcpy(L2, L1);
 Block(label);
 if(Look == 'l')
 { Match('l');
 strcpy(L2, NewLabel());
 strcpy(a_string, "jmp ");
 strcat(a_string, L2);
 EmitLn(a_string);
 PostLabel(L1);
 Block(label);
 }
 Match('e');
 PostLabel(L2);
}
/*-------------------------------*/

Here, the only thing that changes is the addition of the parameter to function Block. An IF statement
doesn't change the loop nesting level, so DoIf just passes the label along. No matter how many levels of IF
nesting we have, the same label will be used.

Now, remember that DoProgram also calls Block, so it now needs to pass it a label. An attempt to exit the
outermost block is an error, so DoProgram passes a null label which is caught by DoBreak:**

void DoBreak(char *label) /* Recognize and Translate a BREAK */
{ char a_string[20];

 Match('b');
 if(label != "")
 { strcpy(a_string, "jmp ");
 strcat(a_string, label);
 EmitLn(a_string);
 }
 else
 { _Abort("No loop to break from");
 }
}
/*-------------------------------*/

void DoProgram() /* Parse and Translate a Program */
{
 Block("");
 if(Look != 'e')
 { Expected("end");
 }
 EmitLn("END");
}
/*-------------------------------*/

That ALMOST takes care of everything. Give it a try, see if you can "break" it <pun>. Careful, though. By this
time we've used so many letters, it's hard to think of characters that aren't now representing reserved words.
Remember: before you try the program, you're going to have to edit every occurence of Block in the other loop
constructs to include the new parameter. Do it just like I did for LOOP.**

void Dodo() /* Parse and Translate a DO Statement */
{ char L1[7], L2[7], a_string[20];

 Match('d');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 Expression();
 EmitLn("sub ax, 1");
 PostLabel(L1);
 EmitLn("push ax");
 Block(L2);
 EmitLn("pop ax");
 EmitLn("dec ax");
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
}
/*-------------------------------*/

void DoFor() /* Parse and Translate a FOR Statement */
{ char a_string[20];
 char Name, L1[7], L2[7];

 Match('f');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 Name = GetName();
 Match('=');

 Expression();
 strcpy(a_string, "sub , 1");
 a_string[5] = Name;
 EmitLn(a_string);
 Expression();
 EmitLn("push ax");
 PostLabel(L1);
 strcpy(a_string, "add , 1");
 a_string[5] = Name;
 EmitLn(a_string);
 EmitLn("xor ax, ax");
 strcpy(a_string, "mov al, ");
 a_string[9] = Name;
 EmitLn(a_string);
 EmitLn("mov si, sp");
 EmitLn("cmp ax, [si]");
 strcpy(a_string, "jge ");
 strcat(a_string, L2);
 EmitLn(a_string);
 Block(L2);
 Match('e');
 strcpy(a_string, "jmp ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
 EmitLn("add sp, 2");
}
/*-------------------------------*/

void DoRepeat() /* Parse and Translate a REPEAT Statement */
{ char L1[7], L2[7], a_string[20];

 Match('r');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 PostLabel(L1);
 Block(L2);
 Match('u');
 Condition();
 strcpy(a_string, "jz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
}
/*-------------------------------*/

void DoWhile() /* Parse and Translate a WHILE Statement */
{ char a_string[20];
 char L1[7], L2[7];

 Match('w');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 PostLabel(L1);
 Condition();
 strcpy(a_string, "jz ");
 strcat(a_string, L2);
 EmitLn(a_string);
 Block(L2);

 Match('e');
 strcpy(a_string, "jmp ");
 strcat(a_string, L1);
 EmitLn(a_string);
 PostLabel(L2);
}
/*-------------------------------*/

I said ALMOST above. There is one slight problem: if you take a hard look at the code generated for DO,
you'll see that if you break out of this loop, the value of the loop counter is still left on the stack. We're going to
have to fix that! A shame ...that was one of our smaller routines, but it can't be helped.
Here's a version that doesn't have the problem:**

void Dodo() /* Parse and Translate a DO Statement */
{ char L1[7], L2[7], a_string[20];

 Match('d');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 Expression();
 EmitLn("sub ax, 1");
 PostLabel(L1);
 EmitLn("push ax");
 Block(L2);
 EmitLn("pop ax");
 EmitLn("dec ax");
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 EmitLn("sub sp, 2");
 PostLabel(L2);
 EmitLn("add sp, 2");
}
/*-------------------------------*/

The two extra instructions, the SUB and ADD, take care of leaving the stack in the right shape.
**Recompile and try:

adxyze
adxibeye
awxibeyzqe

CONCLUSION
At this point we have created a number of control constructs ...a richer set, really, than that provided by almost
any other programming language. And, except for the FOR loop, it was pretty easy to do. Even that one was
tricky only because it's tricky in assembler language.

I'll conclude this session here. To wrap the thing up with a red ribbon, we really should have a go at having
real keywords instead of these mickey-mouse single-character things. You've already seen that the
extension to multi-character words is not difficult, but in this case it will make a big difference in the appearance
of our input code. I'll save that little bit for the next installment. In that installment we'll also address Boolean
expressions, so we can get rid of the dummy version of Condition that we've used here. See you then.

For reference purposes, here is the completed parser for this session:**

**See file: Cradle.c.v5

NTRODUCTION
In Part V of this series, we took a look at control constructs, and developed parsing routines to translate
them into object code. We ended up with a nice, relatively rich set of constructs.

As we left the parser, though, there was one big hole in our capabilities: we did not address the issue of
the branch condition. To fill the void, I introduced to you a dummy parse routine called Condition, which only
served as a place-keeper for the real thing.

One of the things we'll do in this session is to plug that hole by expanding Condition into a true
parser/translator.

THE PLAN
We're going to approach this installment a bit differently than any of the others. In those other installments,
we started out immediately with experiments using the compiler, building up the parsers from very
rudimentary beginnings to their final forms, without spending much time in planning beforehand. That's called
coding without specs, and it's usually frowned upon. We could get away with it before because the rules of
arithmetic are pretty well established ... we know what a '+' sign is supposed to mean without having to discuss
it at length. The same is true for branches and loops. But the ways in which programming languages
implement logic vary quite a bit from language to language. So before we begin serious coding, we'd better
first make up our minds what it is we want. And the way to do that is at the level of the BNF syntax rules (the
GRAMMAR).

THE GRAMMAR
For some time now, we've been implementing BNF syntax equations for arithmetic expressions, without ever
actually writing them down all in one place. It's time that we did so. They are:**

 <expression> = <unary op> <term> [<addop> <term>]*
 <term> = <factor> [<mulop> factor]*
 <factor> = <integer> | <variable> | (<expression>)

(Remember, the nice thing about this grammar is that it enforces the operator precedence hierarchy that we
normally expect for algebra.)

Actually, while we're on the subject, I'd like to amend this grammar a bit right now. The way we've handled
the unary minus is a bit awkward. I've found that it's better to write the grammar this way:**

 <expression> = <term> [<addop> <term>]*
 <term> = <signed factor> [<mulop> factor]*
 <signed factor> = [<addop>] <factor>
 <factor> = <integer> | <variable> | (<expression>)

This puts the job of handling the unary minus onto Factor, which is where it really belongs.

This doesn't mean that you have to go back and recode the programs you've already written, although
you're free to do so if you like. But I will be using the new syntax from now on.

Now, it probably won't come as a shock to you to learn that we can define an analogous grammar for Boolean
algebra. A typical set or rules is:**

 <b-expression> = <b-term> [<orop> <b-term>]*
 <b-term> = <not-factor> [AND <not-factor>]*
 <not-factor> = [NOT] <b-factor>
 <b-factor> = <b-literal> | <b-variable> | (<b-expression>)

Notice that in this grammar, the operator AND is analogous to '*', and OR (and exclusive OR) to '+'. The

NOT operator is analogous to a unary minus. This hierarchy is not absolutely standard ... some
languages, notably Ada, treat all logical operators as having the same precedence level ... but it seems
natural.

Notice also the slight difference between the way the NOT and the unary minus are handled. In algebra,
the unary minus is considered to go with the whole term, and so never appears but once in a given term. So
an expression like

 a * -b
or worse yet,
 a - -b

is not allowed. In Boolean algebra, though, the expression

 a AND NOT b

makes perfect sense, and the syntax shown allows for that.

RELOPS
OK, assuming that you're willing to accept the grammar I've shown here, we now have syntax rules for both
arithmetic and Boolean algebra. The sticky part comes in when we have to combine the two. Why do we
have to do that? Well, the whole subject came up because of the need to process the "predicates"
(conditions) associated with control statements such as the IF. The predicate is required to have a Boolean
value; that is, it must evaluate to either TRUE or FALSE. The branch is then taken or not taken, depending
on that value. What we expect to see going on in procedure Condition, then, is the evaluation of a
Boolean expression.

But there's more to it than that. A pure Boolean expression can indeed be the predicate of a control
statement ... things like

IF a AND NOT b THEN

But more often, we see Boolean algebra show up in such things as

IF (x >= 0) and (x <= 100) THEN ...

Here, the two terms in parens are Boolean expressions, but the individual terms being compared: x, 0, and
100, are NUMERIC in nature. The RELATIONAL OPERATORS >= and <= are the catalysts by which the
Boolean and the arithmetic ingredients get merged together.

Now, in the example above, the terms being compared are just that: terms. However, in general each
side can be a math expression. So we can define a RELATION to be:

 <relation> = <expression> <relop> <expression> ,

where the expressions we're talking about here are the old numeric type, and the relops are any of the
usual symbols

 =, <> (or !=), <, >, <=, and >=

If you think about it a bit, you'll agree that, since this kind of predicate has a single Boolean value, TRUE or
FALSE, as its result, it is really just another kind of factor. So we can expand the definition of a Boolean
factor above to read:

 <b-factor> = <b-literal>
 | <b-variable>
 | (<b-expression>)
 | <relation>

THAT's the connection! The relops and the relation they define serve to wed the two kinds of algebra. It is
worth noting that this implies a hierarchy where the arithmetic expression has a HIGHER precedence that a
Boolean factor, and therefore than all the Boolean operators. If you write out the precedence levels for all the
operators, you arrive at the following list:

 Level Syntax Element Operator
 0 factor literal, variable
 1 signed factor unary minus
 2 term *, /
 3 expression +, -
 4 b-factor literal, variable, relop
 5 not-factor NOT
 6 b-term AND
 7 b-expression OR, XOR

If we're willing to accept that many precedence levels, this grammar seems reasonable. Unfortunately, it
won't work! The grammar may be great in theory, but it's no good at all in the practice of a top-down parser.
To see the problem, consider the code fragment:

 IF ((((((A + B + C) < 0) AND

When the parser is parsing this code, it knows after it sees the IF token that a Boolean expression is supposed
to be next. So it can set up to begin evaluating such an expression. But the first expression in the example is
an ARITHMETIC expression, A + B + C. What's worse, at the point that the parser has read this much of the
input line:

 IF ((((((A ,

it still has no way of knowing which kind of expression it's dealing with. That won't do, because we must
have different recognizers for the two cases. The situation can be handled without changing any of our
definitions, but only if we're willing to accept an arbitrary amount of backtracking to work our way out of bad
guesses. No compiler writer in his right mind would agree to that.

What's going on here is that the beauty and elegance of BNF grammar has met face to face with the
realities of compiler technology.

To deal with this situation, compiler writers have had to make compromises so that a single parser can
handle the grammar without backtracking.

FIXING THE GRAMMAR
The problem that we've encountered comes up because our definitions of both arithmetic and Boolean
factors permit the use of parenthesized expressions. Since the definitions are recursive, we can end up
with any number of levels of parentheses, and the parser can't know which kind of expression it's dealing
with.

The solution is simple, although it ends up causing profound changes to our grammar. We can only allow
parentheses in one kind of factor. The way to do that varies considerably from language to language. This
is one place where there is NO agreement or convention to help us.

When Niklaus Wirth designed Pascal, the desire was to limit the number of levels of precedence (fewer parse
routines, after all). So the OR and exclusive OR operators are treated just like an Addop and processed at
the level of a math expression. Similarly, the AND is treated like a Mulop and processed with Term. The
precedence levels are

 Level Syntax Element Operator
 0 factor literal, variable

 1 signed factor unary minus, NOT
 2 term *, /, AND
 3 expression +, -, OR

Notice that there is only ONE set of syntax rules, applying to both kinds of operators. According to this
grammar, then, expressions like**

 x + (y AND NOT z) / 3

are perfectly legal. And, in fact, they ARE ... as far as the parser is concerned. Pascal doesn't allow the
mixing of arithmetic and Boolean variables, and things like this are caught at the SEMANTIC level, when it
comes time to generate code for them, rather than at the syntax level.

The authors of C took a diametrically opposite approach: they treat the operators as different, and have
something much more akin to our seven levels of precedence. In fact, in C there are no fewer than 17 levels!
That's because C also has the operators '=', '+=' and its kin, '<<', '>>', '++', '--', etc. Ironically, although in C the
arithmetic and Boolean operators are treated separately, the variables are NOT ... there are no Boolean or
logical variables in C, so a Boolean test can be made on any integer value.

We'll do something that's sort of in-between. I'm tempted to stick mostly with the Pascal approach, since
that seems the simplest from an implementation point of view, but it results in some funnies that I never liked
very much, such as the fact that, in the expression

 IF (c >= 'A') and (c <= 'Z') then ...

the parens above are REQUIRED. I never understood why before, and neither my compiler nor any human
ever explained it very well, either. But now, we can all see that the 'and' operator, having the precedence of
a multiply, has a higher one than the relational operators, so without the parens the expression is equivalent
to

 IF c >= ('A' and c) <= 'Z' then

which doesn't make sense.
In any case, I've elected to separate the operators into different levels, although not as many as in C.

 <b-expression> = <b-term> [<orop> <b-term>]*
 <b-term> = <not-factor> [AND <not-factor>]*
 <not-factor> = [NOT] <b-factor>
 <b-factor> = <b-literal> | <b-variable> | <relation>
 <relation> = | <expression> [<relop> <expression]
 <expression> = <term> [<addop> <term>]*
 <term> = <signed factor> [<mulop> factor]*
 <signed factor> = [<addop>] <factor>
 <factor> = <integer> | <variable> | (<b-expression>)

This grammar results in the same set of seven levels that I showed earlier. Really, it's almost the same
grammar ... I just removed the option of parenthesized b-expressions as a possible b-factor, and added the
relation as a legal form of b-factor.

There is one subtle but crucial difference, which is what makes the whole thing work. Notice the square
brackets in the definition of a relation. This means that the relop and the second expression are
OPTIONAL.

A strange consequence of this grammar (and one shared by C) is that EVERY expression is potentially a
Boolean expression. The parser will always be looking for a Boolean expression, but will "settle" for an
arithmetic one. To be honest, that's going to slow down the parser, because it has to wade through more
layers of procedure calls. That's one reason why Pascal compilers tend to compile faster than C compilers. If
it's raw speed you want, stick with the Pascal syntax.

THE PARSER
Now that we've gotten through the decision-making process, we can press on with development of a parser.
You've done this with me several times now, so you know the drill: we begin with a fresh copy of the cradle,
and begin adding procedures one by one. So let's do it.

**Begin with file: Cradle6A.c

We begin, as we did in the arithmetic case, by dealing only with Boolean literals rather than variables. This
gives us a new kind of input token, so we're also going to need a new recognizer, and a new procedure to read
instances of that token type. Let's start by defining the two new procedures:**

**Add to Prototypes:
 int IsBoolean(char);
 int GetBoolean(void);
 void BoolExpression(void);

int IsBoolean(char ch) /* Recognize a Boolean Literal */
{ int rval=0;
 char Uch;

 Uch = toupper(ch);
 if((Uch == 'T') || (Uch == 'F'))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

int GetBoolean() /* Get a Boolean Literal */
{ int rval=0;
 char ch;

 if(IsBoolean(Look) == 0)
 { Expected("Boolean Literal");
 }
 ch = toupper(Look);
 if(ch == 'T')
 { rval = 1;
 }
 _GetChar();
 return rval;
}
/*-------------------------------*/

Type these routines into your program. You can test them by adding into the main program the print
statement:**

void main()
{
 Init(); /* Main Program */
 printf("%d\n", GetBoolean());
}
/*-------------------------------*/

OK, compile the program and test it.

**Try entering: t, f, and: a.

As usual, it's not very impressive so far, but it soon will be.

Now, when we were dealing with numeric data we had to arrange to generate code to load the values into AX.
We need to do the same for Boolean data. The usual way to encode Boolean variables is to let 0 stand for
FALSE, and some other value for TRUE. Many languages, such as C, use an integer 1 to represent it. But
I prefer FFFF hex (or -1), because a bitwise NOT also becomes a Boolean NOT. So now we need to emit
the right assembler code to load those values. The first cut at the Boolean expression parser
(BoolExpression, of course) is:**

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
 if(IsBoolean(Look) == 0)
 { Expected("Boolean Literal");
 }
 if(GetBoolean())
 { EmitLn("mov ax, -1");
 }
 else
 { EmitLn("mov ax, 0");
 }
}
/*-------------------------------*/

Add this procedure to your parser, and call it from the main program (replacing the print statement you had
just put there). **

void main() /* Main Program */
{
 Init();
 BoolExpression();
}
/*-------------------------------*/

**OK, recompile the program and test it again:
Try entering: t, f, and: a.

As you can see, we still don't have much of a parser, but the output code is starting to look more realistic.
Next, of course, we have to expand the definition of a Boolean expression. We already have the BNF rule:

 <b-expression> = <b-term> [<orop> <b-term>]*

I prefer the Pascal versions of the "orops", OR and XOR. But since we are keeping to single-character
tokens here, I'll encode those with '|' and '~'. The next version of BoolExpression is almost a direct copy of the
arithmetic procedure Expression:**

**Add to Prototypes:
 void BoolOr(void);
 void BoolXor(void);
 int IsOrop(char);
 void BoolTerm(void);

void BoolOr() /* Recognize and Translate a Boolean OR */
{
 Match('|');
 BoolTerm();
 EmitLn("pop bx");

 EmitLn("or ax, bx");
}
/*-------------------------------*/

void BoolXor() /* Recognize and Translate an Exclusive Or */
{
 Match('~');
 BoolTerm();
 EmitLn("pop bx");
 EmitLn("xor ax, bx");
}
/*-------------------------------*/

Note the new recognizer IsOrop, which is also a copy, this time of IsAddOp:**

int IsOrop(char ch) /* Recognize a Boolean Orop */
{ int rval=0;

 if((ch == '|') || (ch == '~'))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

OK, rename the old version of BoolExpression to BoolTerm, then enter the code below.**

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
 BoolTerm();
 while(IsOrop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '|':
 BoolOr();
 break;
 case '~':
 BoolXor();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

Compile and test this version.
**Try: |t, |f, ~t, ~f

At this point, the output code is starting to look pretty good. Of course, it doesn't make much sense to do a
lot of Boolean algebra on constant values, but we'll soon be expanding the types of Booleans we deal with.

You've probably already guessed what the next step is: The Boolean version of Term.

**Rename the current function BoolTerm to BoolFactor, and enter the following new version of BoolTerm.
Note that this is much simpler than the numeric version, since there is no equivalent of division.**

**Add to Prototypes:
 void BoolFactor(void);
 void NotFactor(void);
 void Relation(void);

void BoolTerm() /* Parse and Translate a Boolean Term */
{
 NotFactor();
 while(Look == '&')
 { EmitLn("push ax");
 Match('&');
 NotFactor();
 EmitLn("pop bx");
 EmitLn("and ax, bx");
 }
}
/*-------------------------------*/

Now, we're almost home. We are translating complex Boolean expressions, although only for constant
values. The next step is to allow for the NOT. Write the following function:**

void NotFactor() /* Parse and Translate a Boolean Factor with NOT */
{
 if(Look == '!')
 { Match('!');
 BoolFactor();
 EmitLn("xor ax, -1");
 }
 else
 { BoolFactor();
 }
}
/*-------------------------------*/

Now try that. **Recompile and test it's working with:**
|!t, ~!t, |t&t, ~t&t, |t~t&t

At this point the parser should be able to handle any Boolean expression you care to throw at it. Does it?
Does it trap badly formed expressions?

If you've been following what we did in the parser for math expressions, you know that what we did next
was to expand the definition of a factor to include variables and parens. We don't have to do that for the
Boolean factor, because those little items get taken care of by the next step. It takes just a one line addition
to BoolFactor to take care of relations:

void BoolFactor() /* Parse and Translate a Boolean Factor */
{
 if(IsBoolean(Look))
 { if(GetBoolean())
 { EmitLn("mov ax, -1");
 }
 else
 { EmitLn("mov ax, 0");
 }
 }
 else
 { Relation();

 }
}
/*-------------------------------*/

You might be wondering when I'm going to provide for Boolean variables and parenthesized Boolean
expressions. The answer is, I'm NOT! Remember, we took those out of the grammar earlier. Right now all
I'm doing is encoding the grammar we've already agreed upon. The compiler itself can't tell the difference
between a Boolean variable or expression and an arithmetic one ... all of those will be handled by Relation,
either way.

Of course, it would help to have some code for Relation. I don't feel comfortable, though, adding any more
code without first checking out what we already have. So for now let's just write a dummy version of Relation
that does nothing except eat the current character, and write a little message:**

void Relation() /* Parse and Translate a Relation */
{
 printf("\t<Relation>\n");
}
/*-------------------------------*/

OK, key in this code , **recompile and give it a try: **
|a, ~a, |t&a, |!a

All the old things should still work ... you should be able to generate the code for ANDs, ORs, and NOTs. In
addition, if you type any alphabetic character you should get a little <Relation> place-holder, where a Boolean
factor should be. Did you get that? Fine, then let's move on to the full-blown version of Relation.

To get that, though, there is a bit of groundwork that we must lay first. Recall that a relation has the form

 <relation> = | <expression> [<relop> <expression]

Since we have a new kind of operator, we're also going to need a new Boolean function to recognize it. That
function is shown below. Because of the single-character limitation, I'm sticking to the four operators that can
be encoded with such a character (the "not equals" is encoded by '#').**

**Add to Prototypes:
 int IsRelop(char);

int IsRelop(char ch) /* Recognize a Relop */
{ int rval=0;

 if(strchr("=#<>", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

Now, recall that we're using a zero or a -1 in register AX to represent a Boolean value, and also that the
loop constructs expect the flags to be set to correspond.**

Since the loop constructs operate only on the flags, it would be nice (and also quite efficient) just to set up
those flags, and not load anything into AX at all. This would be fine for the loops and branches, but
remember that the relation can be used ANYWHERE a Boolean factor could be used. We may be storing its
result to a Boolean variable. Since we can't know at this point how the result is going to be used, we must allow
for BOTH cases.

Comparing numeric data is easy enough ... the **x86 has an operation for that ... but it sets the flags,
not a value. What's more, the flags will always be set the same (zero if equal, etc.), while we need the zero
flag set differently for the each of the different relops.

**The solution is to set a byte value to 0000 or FFFF depending upon the result of the specified condition.
If we make the destination byte to be AH, we get the Boolean value needed.
**And, we have to do one last step, which is to test AH and set the flags to match it. It must seem to be a trip
around the moon to get what we want: we first perform the test, then test the flags to set data into AH, then test
AH to set the flags again. It is sort of roundabout, but it's the most straightforward way to get the flags right.

I might mention here that this area is, in my opinion, the one that represents the biggest difference between
the efficiency of hand-coded assembler language and compiler-generated code. We have seen already
that we lose efficiency in arithmetic operations, although later I plan to show you how to improve that a bit.
We've also seen that the control constructs themselves can be done quite efficiently ... it's usually very difficult
to improve on the code generated for an IF or a WHILE. But virtually every compiler I've ever seen
generates terrible code, compared to assembler, for the computation of a Boolean function, and particularly for
relations. The reason is just what I've hinted at above. When I'm writing code in assembler, I go ahead and
perform the test the most convenient way I can, and then set up the branch so that it goes the way it should.
In effect, I "tailor" every branch to the situation. The compiler can't do that (practically), and it also can't know
that we don't want to store the result of the test as a Boolean variable. So it must generate the code in a
very strict order, and it often ends up loading the result as a Boolean that never gets used for anything.

In any case, we're now ready to look at the code for Relation. It's shown below with its companion functions:**
**Note: the following functions use the 386 mnemonics SET[x], where [x] is: [E]qual, [NE]qual, [L]ess,
[G]reater. There is no one single comparable x88/x86/286 instruction.

**Add to Prototypes:
 void Equals(void);
 void NotEquals(void);
 void Less(void);
 void Greater(void);

void Equals() /* Recognize and Translate a Relational "Equals" */
{
 Match('=');
 Expression();
 EmitLn("pop bx");
 EmitLn("cmp ax, bx");
 EmitLn("sete al");
 EmitLn("neg al");
}
/*-------------------------------*/

void NotEquals() /*Recognize and Translate a Relational "Not Equals"*/
{
 Match('#');
 Expression();
 EmitLn("pop bx");
 EmitLn("cmp ax, bx");
 EmitLn("setne al");
 EmitLn("neg al");
}
/*-------------------------------*/

void Less() /* Recognize and Translate a Relational "Less Than" */
{
 Match('<');
 Expression();

 EmitLn("pop bx");
 EmitLn("cmp ax, bx");
 EmitLn("setl al");
 EmitLn("neg al");
}
/*-------------------------------*/

void Greater() /*Recognize and Translate a Relational "Greater Than"*/
{
 Match('>');
 Expression();
 EmitLn("pop bx");
 EmitLn("cmp ax, bx");
 EmitLn("setg al");
 EmitLn("neg al");
}
/*-------------------------------*/

void Relation() /* Parse and Translate a Relation */
{
 Expression();
 if(IsRelop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '=':
 Equals();
 break;
 case '#':
 NotEquals();
 break;
 case '<':
 Less();
 break;
 case '>':
 Greater();
 break;
 default:
 break;
 }
 EmitLn("test ax, 11111111b");
 }
}
/*-------------------------------*/

Now, that call to Expression looks familiar! Here is where the editor of your system comes in handy. We have
already generated code for Expression and its buddies in previous sessions. You can copy them into your
file now. Remember to use the single-character versions. Just to be certain, I've duplicated the arithmetic
procedures below. If you're observant, you'll also see that I've changed them a little to make them
correspond to the latest version of the syntax. This change is NOT necessary, so you may prefer to hold
off on that until you're sure everything is working.**

**Add to Prototypes:
 void Term(void); void Expression(void);
 void SignedFactor(void);

void Term() /* Parse and Translate a Math Term */
{
 SignedFactor();

 while((Look == '*') || (Look == '/'))
 { EmitLn("push ax");
 switch(Look)
 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
 Term();
 while(IsAddop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void SignedFactor() /* Parse and Translate the First Math Factor */
{ char iGetNum, a_string[20];

 if(Look == '+')
 { _GetChar();
 }
 if(Look == '-')
 { _GetChar();
 if(isdigit(Look))
 { iGetNum = GetNum();
 strcpy(a_string, "mov ax, - ");
 a_string[10] = iGetNum;
 EmitLn(a_string);
 }
 else
 { Factor();
 EmitLn("neg ax");
 }
 }
 else
 { Factor();
 }
}
/*-------------------------------*/

There you have it ... a parser that can handle both arithmetic AND Boolean algebra, and things that combine
the two through the use of relops. I suggest you file away a copy of this parser in a safe place, **(save it as
"Cradle6B.c"), for future reference, because in our next step we're going to be chopping it up.

MERGING WITH CONTROL CONSTRUCTS
At this point, let's go back to the file we had previously built, **("Cradle.c.v5"), that parses control constructs.
Remember those little dummy functions called Condition and Expression? Now you know what goes in their
places!

I warn you, you're going to have to do some creative editing here, so take your time and get it right. **What
you need to do is to copy all of the functions listed below from Cradle.c.v5 into Cradle6A.c :**

**Add to Prototypes:
 void DoProgram(void); void Block(char *);
 void DoIf(char *); char *NewLabel(void);
 void PostLabel(char *); void DoWhile(void);
 void DoLoop(void); void DoRepeat(void);
 void DoFor(void); void Dodo(void);
 void DoBreak(char *);

Next, change every call to Condition to refer to BoolExpression instead. **
That should do it.**

ADDING ASSIGNMENTS

As long as we're this far, and we already have the routines for expressions in place, we might as well replace
the "blocks" with real assignment statements. We've already done that before, so it won't be too hard. Before
taking that step, though, we need to fix something else.
We're soon going to find that the one-line "programs" that we're having to write here will really cramp our style.
At the moment we have no cure for that, because our parser doesn't recognize the end-of-line characters, the
carriage return (CR) and the line feed (LF). So before going any further let's plug that hole.

There are a couple of ways to deal with the CR/LFs. One (the C/Unix approach) is just to treat them as
additional white space characters and ignore them. That's actually not such a bad approach, but it does
sort of produce funny results for our parser as it stands now. If it were reading its input from a source file as
any self-respecting REAL compiler does, there would be no problem. But we're reading input from the
keyboard, and we're sort of conditioned to expect something to happen when we hit the return key. It won't, if
we just skip over the CR and LF (try it). So I'm going to use a different method here, which is NOT necessarily
the best approach in the long run. Consider it a temporary kludge until we're further along.

Instead of skipping the CR/LF, We'll let the parser go ahead and catch them, then introduce a special
procedure, analogous to SkipWhite, that skips them only in specified "legal" spots.

Here's the procedure:**

**Add to Prototypes:
 void Fin(void);
 void Assignment(void);

void Fin() /* Skip a CRLF */
{
 if(Look == '\n')
 { _GetChar();
 }
}

/*-------------------------------*/

Now, add two calls to Fin and a call to Assignment in function Block, like this:

void Block(char *label) /* Recognize and Translate a Statement Block */
{
 while(strchr("elu", Look) == 0)
 { Fin(); /* <----- Fin */
 switch(Look)
 { case 'i':
 DoIf(label);
 break;
 case 'w':
 DoWhile();
 break;
 case 'p':
 DoLoop();
 break;
 case 'r':
 DoRepeat();
 break;
 case 'f':
 DoFor();
 break;
 case 'd':
 Dodo();
 break;
 case 'b':
 DoBreak(label);
 break;
 default:
 Assignment(); /* <---- change this */
 break;
 }
 Fin(); /* <----- Fin */

 }
}
/*-------------------------------*/

Now, you'll find that you can use multiple-line "programs." The only restriction is that you can't separate an IF
or WHILE token from its predicate.

Now we're ready to include the assignment statements. Simply change that call to Other in function
Block to a call to Assignment, and add the following procedure, copied from one of our earlier programs.
Note that Assignment now calls BoolExpression, so that we can assign Boolean variables.**

void Assignment() /* Parse and Translate an Assignment Statement */
{ char Name, a_string[20] = {0,0};

 Name = GetName();
 if(isalpha(Look))
 { a_string[0] = Name;
 EmitLn(a_string);
 }
 else
 { Match('=');
 BoolExpression();

 strcpy(a_string, "lea di, ");
 a_string[9] = Name;
 EmitLn(a_string);
 EmitLn("mov [di], ax");
 }
}
/*-------------------------------*/

**Compile the resulting program and give it a try. Since we haven't used this program in a while, don't
forget that we used single-character tokens for IF, WHILE, etc. Also don't forget that any letter not a keyword
just gets echoed as a block.
**Try : x=2*y+3/4e x=2*(y+3)/4e x=2*y+3/(4*z)e

x=B*B+4*a*ce

**Try calling functions: a=Q()B=W()x=a+Be

**Now try:
iB<cB=cee which stands for "IF B<c, B=c EndIF: End"
iB<cB=clB=0ee which stands for "IF B<c, B=c Else B=0 EndIF: End"
wa>Ba=a-1ee which stands for "While a>B a=a-1 EndWhile: End"
pa=a+1ia=9beee which stands for "Loop: a=a+1, IF a=9 Break: EndIF: EndLoop: End"

ra=a+1ua=9B=ae which stands for "Repeat: a=a+1 Until:a=9: B=a: End"
fa=09B=aee which stands for "FOR a=0 to 9:NEXT: B=a: EndFOR: End"
a=9daB=B+1e which stands for "a=9:Do a[loops], B=B+1: End"

What do you think? Did it work? Try some others.

With that change, you should now be able to write reasonably realistic-looking programs, subject only to
our limitation on single-character tokens. My original intention was to get rid of that limitation for you, too.
However, that's going to require a fairly major change to what we've done so far. We need a true lexical
scanner, and that requires some structural changes. They are not BIG changes that require us to throw away
all of what we've done so far ... with care, it can be done with very minimal changes, in fact. But it does require
that care.

This installment has already gotten pretty long, and it contains some pretty heavy stuff, so I've decided to leave
that step until next time, when you've had a little more time to digest what we've done and are ready to start
fresh.

In the next installment, then, we'll build a lexical scanner and eliminate the single-character barrier once and
for all. We'll also write our first complete compiler, based on what we've done in this session. See you then.

INTRODUCTION
In the last installment, I left you with a compiler that would ALMOST work, except that we were still limited
to single-character tokens. The purpose of this session is to get rid of that restriction, once and for all. This
means that we must deal with the concept of the lexical scanner.

Maybe I should mention why we need a lexical scanner at all ...after all, we've been able to manage all right
without one, up till now, even when we provided for multi-character tokens.

The ONLY reason, really, has to do with keywords. It's a fact of computer life that the syntax for a keyword has
the same form as that for any other identifier. We can't tell until we get the complete word whether or not it
IS a keyword. For example, the variable IFILE and the keyword IF look just alike, until you get to the third
character. In the examples to date, we were always able to make a decision based upon the first character
of the token, but that's no longer possible when keywords are present. We need to know that a given string is
a keyword BEFORE we begin to process it. And that's why we need a scanner.

In the last session, I also promised that we would be able to provide for normal tokens without making
wholesale changes to what we have already done. I didn't lie ... we can, as you will see later. But every time I
set out to install these elements of the software into the parser we have already built, I had bad feelings about
it. The whole thing felt entirely too much like a band-aid. I finally figured out what was causing the problem: I
was installing lexical scanning software without first explaining to you what scanning is all about, and what the
alternatives are. Up till now, I have studiously avoided giving you a lot of theory, and certainly not
alternatives. I generally don't respond well to the textbooks that give you twenty-five different ways to do
something, but no clue as to which way best fits your needs. I've tried to avoid that pitfall by just showing you
ONE method, that WORKS.

But this is an important area. While the lexical scanner is hardly the most exciting part of a compiler, it
often has the most profound effect on the general "look & feel" of the language, since after all it's the part
closest to the user. I have a particular structure in mind for the scanner to be used with KISS. It fits the look
& feel that I want for that language. But it may not work at all for the language YOU'RE cooking up, so
in this one case I feel that it's important for you to know your options.

So I'm going to depart, again, from my usual format. In this session we'll be getting much deeper than
usual into the basic theory of languages and grammars. I'll also be talking about areas OTHER than
compilers in which lexical scanning plays an important role. Finally, I will show you some alternatives for the
structure of the lexical scanner. Then, and only then, will we get back to our parser from the last installment.
Bear with me ... I think you'll find it's worth the wait. In fact, since scanners have many applications outside of
compilers, you may well find this to be the most useful session for you.

LEXICAL SCANNING
Lexical scanning is the process of scanning the stream of input characters and separating it into strings
called tokens. Most compiler texts start here, and devote several chapters to discussing various ways to
build scanners. This approach has its place, but as you have already seen, there is a lot you can do without
ever even addressing the issue, and in fact the scanner we'll end up with here won't look much like what
the texts describe. The reason? Compiler theory and, consequently, the programs resulting from it, must
deal with the most general kind of parsing rules. We don't. In the real world, it is possible to specify the
language syntax in such a way that a pretty simple scanner will suffice. And as always, KISS is our motto.

Typically, lexical scanning is done in a separate part of the compiler, so that the parser per se sees only a
stream of input tokens. Now, theoretically it is not necessary to separate this function from the rest of the
parser. There is only one set of syntax equations that define the whole language, so in theory we could write
the whole parser in one module.

Why the separation? The answer has both practical and theoretical bases.

In 1956, Noam Chomsky defined the "Chomsky Hierarchy" of grammars. They are:

 o Type 0: Unrestricted (e.g., English)

 o Type 1: Context-Sensitive

 o Type 2: Context-Free

 o Type 3: Regular

A few features of the typical programming language (particularly the older ones, such as FORTRAN) are Type
1, but for the most part all modern languages can be described using only the last two types, and those are
all we'll be dealing with here.

The neat part about these two types is that there are very specific ways to parse them. It has been shown
that any regular grammar can be parsed using a particular form of abstract machine called the state machine
(finite automaton). We have already implemented state machines in some of our recognizers.

Similarly, Type 2 (context-free) grammars can always be parsed using a push-down automaton (a state

machine augmented by a stack). We have also implemented these machines. Instead of implementing a
literal stack, we have relied on the built-in stack associated with recursive coding to do the job, and that in fact
is the preferred approach for top-down parsing.

Now, it happens that in real, practical grammars, the parts that qualify as regular expressions tend to be the
lower-level parts, such as the definition of an identifier:

<ident> = <letter> [<letter> | <digit>]*

Since it takes a different kind of abstract machine to parse the two types of grammars, it makes sense to
separate these lower-level functions into a separate module, the lexical scanner, which is built around the
idea of a state machine. The idea is to use the simplest parsing technique needed for the job.

There is another, more practical reason for separating scanner from parser. We like to think of the input
source file as a stream of characters, which we process right to left without backtracking. In practice that
isn't possible. Almost every language has certain keywords such as IF, WHILE, and END. As I mentioned
earlier, we can't really know whether a given character string is a keyword, until we've reached the end of
it, as defined by a space or other delimiter. So in that sense, we MUST save the string long enough to find
out whether we have a keyword or not. That's a limited form of backtracking.

So the structure of a conventional compiler involves splitting up the functions of the lower-level and higher-level
parsing. The lexical scanner deals with things at the character level, collecting characters into strings, etc.,
and passing them along to the parser proper as indivisible tokens. It's also considered normal to let the
scanner have the job of identifying keywords.

STATE MACHINES AND ALTERNATIVES
I mentioned that the regular expressions can be parsed using a state machine. In most compiler texts, and
indeed in most compilers as well, you will find this taken literally. There is typically a real implementation of
the state machine, with integers used to define the current state, and a table of actions to take for each
combination of current state and input character. If you write a compiler front end using the popular Unix
tools LEX and YACC, that's what you'll get. The output of LEX is a state machine implemented in C, plus a
table of actions corresponding to the input grammar given to LEX. The YACC output is similar ... a canned
table-driven parser, plus the table corresponding to the language syntax.

That is not the only choice, though. In our previous installments, you have seen over and over that it is
possible to implement parsers without dealing specifically with tables, stacks, or state variables. In fact, in
Installment V I warned you that if you find yourself needing these things you might be doing something wrong
**. There are basically two ways to define a state machine's state: explicitly, with a state number or code, and
implicitly, simply by virtue of the fact that I'm at a certain place in the code (if it's Tuesday, this must be
Belgium). We've relied heavily on the implicit approaches before, and I think you'll find that they work well
here, too.

In practice, it may not even be necessary to HAVE a well-defined lexical scanner. This isn't our first experience
at dealing with multi-character tokens. In Installment III, we extended our parser to provide for them, and
we didn't even NEED a lexical scanner. That was because in that narrow context, we could always tell, just
by looking at the single lookahead character, whether we were dealing with a number, a variable, or an
operator. In effect, we built a distributed lexical scanner, using procedures GetName and GetNum.

With keywords present, we can't know anymore what we're dealing with, until the entire token is read. This
leads us to a more localized scanner; although, as you will see, the idea of a distributed scanner still has its
merits.

SOME EXPERIMENTS IN SCANNING
Before getting back to our compiler, it will be useful to experiment a bit with the general concepts.

Let's begin with the two definitions most often seen in real programming languages:

<ident> = <letter> [<letter> | <digit>]*
<number = [<digit>]+

(Remember, the '*' indicates zero or more occurences of the terms in brackets, and the '+', one or more.)

We have already dealt with similar items in Installment III. Let's begin (as usual) with a bare cradle. Not
surprisingly, we are going to need a new recognizer:**

**Begin with file: Cradle7A.c

Using this let's write the following two routines, which are very similar to those we've used before:**

**Add to Prototypes:
 char *GetName(void);
 char *GetNum(void);

char *GetName() /* Get an Identifier */
{ static char x[9];
 int ndx=0;

 if(! isalpha(Look))
 { Expected("Name");
 }
 while((isalnum(Look)) && (ndx < 8))
 { x[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 x[ndx] = '\0';
 return x;
}
/*-------------------------------*/

char *GetNum() /* Get a Number */
{ static char x[17];
 int ndx=0;

 x[0] = '\0';
 if(! isdigit(Look))
 { Expected("Integer");
 }
 while((isdigit(Look)) && (ndx < 16))
 { x[ndx] = Look;
 ndx++;
 _GetChar();
 }
 x[ndx] = '\0';
 return x;
}
/*-------------------------------*/

(Notice that this version of GetNum returns a string, not an integer as before.)

You can easily verify that these routines work by calling them from the main program, as in **

void main() /* Main Program */
{
 Init();

 printf("%s\n", GetName());
}
/*-------------------------------*/

This program will print any legal name typed in (maximum eight characters, since that's what we told
GetName). It will reject anything else.

Test the other routine similarly.**

void main() /* Main Program */
{
 Init();
 printf("%s\n", GetNum());
}
/*-------------------------------*/

WHITE SPACE
We also have dealt with embedded white space before, using the two routines IsWhite and SkipWhite.
Make sure that these routines are in your current version of the cradle, and add the the line**
 SkipWhite();

**ie:
 ...
 x[ndx] = '\0';
 SkipWhite(); <----- here
 return x;
}
/*-------------------------------*/

at the end of both GetName and GetNum, (just above the: return x;).

Now, let's define the new procedure:**

**Add to Prototypes:
 char *Scan(void);

char *Scan() /* Lexical Scanner */
{ static char Value[20];

 if(isalpha(Look))
 { strcpy(Value, GetName());
 }
 else if(isdigit(Look))
 { strcpy(Value, GetNum());
 }
 else
 { Value[0] = Look;
 Value[1] = '\0';
 _GetChar();
 }
 SkipWhite();
 return Value;
}
/*-------------------------------*/

We can call this from the new main program:**

void main() /* Main Program */
{ char Token[20] = {0};

 Init();
 while(strcmp(Token, "\n") != 0)
 { strcpy(Token, Scan());
 printf("%s\n", Token);
 }
}
/*-------------------------------*/

**Now, compile and run the program. **Try:
 test test test <cr>

Note how the input string is, indeed, separated into distinct tokens.

STATE MACHINES
For the record, a parse routine like GetName does indeed implement a state machine. The state is
implicit in the current position in the code. A very useful trick for visualizing what's going on is the syntax
diagram, or "railroad-track" diagram. It's a little difficult to draw one in this medium, so I'll use them very
sparingly, but the figure below should give you the idea:

 |-----> Other---------------------------> Error
 |
 Start -------> Letter ---------------> Other -----> Finish
 ^ V
 | |
 |<----- Letter <---------|
 | |
 |<----- Digit <----------

As you can see, this diagram shows how the logic flows as characters are read. Things begin, of
course, in the start state, and end when a character other than an alphanumeric is found. If the first
character is not alpha, an error occurs. Otherwise the machine will continue looping until the terminating
delimiter is found.

Note that at any point in the flow, our position is entirely dependent on the past history of the input
characters. At that point, the action to be taken depends only on the current state, plus the current input
character. That's what make this a state machine.

Because of the difficulty of drawing railroad-track diagrams in this medium, I'll continue to stick to syntax
equations from now on. But I highly recommend the diagrams to you for anything you do that involves parsing.
After a little practice you can begin to see how to write a parser directly from the diagrams. Parallel paths
get coded into guarded actions (guarded by IF's or CASE statements), serial paths into sequential calls. It's
almost like working from a schematic.

We didn't even discuss SkipWhite, which was introduced earlier, but it also is a simple state machine, as is
GetNum. So is their parent procedure, Scan. Little machines make big machines.

The neat thing that I'd like you to note is how painlessly this implicit approach creates these state machines.
I personally prefer it a lot over the table-driven approach. It also results is a small, tight, and fast scanner.

NEWLINES
Moving right along, let's modify our scanner to handle more than one line. As I mentioned last time, the most
straightforward way to do this is to simply treat the newline characters, carriage return and line feed, as white
space. This is, in fact, the way the C standard library routine, iswhite, works. We didn't actually try this
before. I'd like to do it now, so you can get a feel for the results.
To do this, simply modify the single executable line of IsWhite to read:**

int IsWhite(char ch)
{ int test=0;

 if(strchr(" \t\n", ch))
 { test = 1;
 }
 return test;
}
/*-------------------------------*/

We need to give the main program a new stop condition, since it will never see a CR. Let's just use: until
Token = '.';
**
void main() /* Main Program */
{ char Token[20] = {0};

 Init();
 while(strcmp(Token, ".") != 0)
 { strcpy(Token, Scan());
 printf("%s\n", Token);
 }
}
/*-------------------------------*/

OK, compile this program and run it. Try a couple of lines, terminated by the period. I used:

 now is the time
 for all good men.

Hey, what happened? When I tried it, I didn't get the last token, the period. The program didn't halt. What's
more, when I pressed the 'enter' key a few times, I still didn't get the period.

If you're still stuck in your program, you'll find that typing a period on a new line will terminate it.

What's going on here? The answer is that we're hanging up in SkipWhite. A quick look at that routine will
show that as long as we're typing null lines, we're going to just continue to loop. After SkipWhite encounters an
LF, it tries to execute a GetChar. But since the input buffer is now empty, GetChar's read statement insists on
having another line. Procedure Scan gets the terminating period, all right, but it calls SkipWhite to clean
up, and SkipWhite won't return until it gets a non-null line.

This kind of behavior is not quite as bad as it seems. In a real compiler, we'd be reading from an input file
instead of the console, and as long as we have some procedure for dealing with end-of-files, everything will
come out OK. But for reading data from the console, the behavior is just too bizarre. The fact of the matter is
that the C/Unix convention is just not compatible with the structure of our parser, which calls for a lookahead
character. The code that the Bell wizards have implemented doesn't use that convention, which is why they
need 'ungetc'.

OK, let's fix the problem. To do that, we need to go back to the old definition of IsWhite (delete the ** \n
characters) and make use of the procedure Fin that I introduced last time. If it's not in your current version of
the cradle, put it there now.**

**Add to Prototypes:
 void Fin(void);

void Fin() /* Skip a CRLF */
{
 if(Look == '\n')
 { _GetChar();
 }
}
/*-------------------------------*/

Also, modify the main program to read:

void main() /* Main Program */
{ char Token[20] = {0};

 Init();
 while(strcmp(Token, ".") != 0)
 { strcpy(Token, Scan());
 printf("%s\n", Token);
 if(Token[0] == '\n')
 { Fin();
 }
 }
}
/*-------------------------------*/

Note the "guard" test preceding the call to Fin. That's what makes the whole thing work, and ensures that we
don't try to read a line ahead.

**Try the code again now. I think you'll like it better.
 now is the time
 for all good men.

If you refer to the code we did in the last installment, you'll find that I quietly sprinkled calls to Fin throughout
the code, wherever a line break was appropriate. This is one of those areas that really affects the look &
feel that I mentioned. At this point I would urge you to experiment with different arrangements and see
how you like them. If you want your language to be truly free-field, then newlines should be
transparent. In this case, the best approach is to put the following lines at the BEGINNING of Scan:**

 while(Look == '\n')
 { Fin();
 }

If, on the other hand, you want a line-oriented language like Assembler, BASIC, or FORTRAN (or even
Ada... note that it has comments terminated by newlines), then you'll need for Scan to return \n's as
tokens. **

For other conventions, you'll have to use other arrangements. In my example of the last session, I allowed
newlines only at specific places, so I was somewhere in the middle ground. In the rest of these sessions, I'll be
picking ways to handle newlines that I happen to like, but I want you to know how to choose other ways for
yourselves.

OPERATORS
We could stop now and have a pretty useful scanner for our purposes. In the fragments of KISS that we've

built so far, the only tokens that have multiple characters are the identifiers and numbers. All operators were
single characters. The only exception I can think of is the relops <=, >=, and <>, but they could be dealt with
as special cases.

Still, other languages have multi-character operators, such as the ':=' of Pascal or the '++' and '>>' of C. So
while we may not need multi-character operators, it's nice to know how to get them if necessary.

Needless to say, we can handle operators very much the same way as the other tokens. Let's start with a
recognizer:**

**Add to Prototypes:
 int IsOp(char);
 char *GetOp(void);

int IsOp(char ch) /* Recognize Any Operator */
{ int rval = 0;

 if(strchr("*+-/<>=", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

char *GetOp() /* Get an Operator */
{ static char op[3];
 int ndx=0;

 if(IsOp(Look) == 0)
 { Expected("Operator");
 }
 while((IsOp(Look)) && (ndx < 2))
 { op[ndx] = Look;
 ndx++;
 _GetChar();
 }
 op[ndx] = '\0';
 SkipWhite();
 return op;
}
/*-------------------------------*/

It's important to note that we DON'T have to include every possible operator in this list. For example, the
paretheses aren't included, nor is the terminating period. The current version of Scan handles single-
character operators just fine as it is. The list above includes only those characters that can appear in multi-
character operators. (For specific languages, of course, the list can always be edited.)

Now, let's modify Scan to read:**

char *Scan() /* Lexical Scanner */
{ static char Value[20];

 while(Look == '\n')
 { Fin();
 }
 if(isalpha(Look))

 { strcpy(Value, GetName());
 }
 else if(isdigit(Look))
 { strcpy(Value, GetNum());
 }
 else if(IsOp(Look))
 { strcpy(Value, GetOp());
 }
 else
 { Value[0] = Look;
 Value[1] = '\0';
 _GetChar();
 }
 SkipWhite();
 return Value;
}
/*-------------------------------*/

Try the program now. You will find that any code fragments you care to throw at it will be neatly broken up
into individual tokens.

LISTS, COMMAS AND COMMAND LINES
Before getting back to the main thrust of our study, I'd like to get on my soapbox for a moment.

How many times have you worked with a program or operating system that had rigid rules about how you must
separate items in a list? (Try, the last time you used MSDOS!) Some programs require spaces as
delimiters, and some require commas. Worst of all, some require both, in different places. Most are
pretty unforgiving about violations of their rules.

I think this is inexcusable. It's too easy to write a parser that will handle both spaces and commas in a
flexible way. Consider the following procedure:**

**Add to Prototypes:
 void SkipComma(void);

void SkipComma() /* Skip Over a Comma */
{
 SkipWhite();
 if(Look == ',')
 { _GetChar();
 SkipWhite();
 }
}
/*-------------------------------*/

This eight-line procedure will skip over a delimiter consisting of any number (including zero) of spaces, with
zero or one comma embedded in the string.

TEMPORARILY, change the call to SkipWhite in Scan to a call to SkipComma. **Recompile and try
inputting some lists.
**Try:

now,is,the,time
for,all,good,men.

Works nicely, eh? Don't you wish more software authors knew about SkipComma?

For the record, I found that adding the equivalent of SkipComma to my Z80 assembler-language programs
took all of 6 (six) extra bytes of code. Even in a 64K machine, that's not a very high price to pay for user-
friendliness!

I think you can see where I'm going here. Even if you never write a line of a compiler code in your life, there
are places in every program where you can use the concepts of parsing. Any program that processes a
command line needs them. In fact, if you think about it for a bit, you'll have to conclude that any time you
write a program that processes user inputs, you're defining a language. People communicate with
languages, and the syntax implicit in your program defines that language. The real question is: are you going
to define it deliberately and explicitly, or just let it turn out to be whatever the program ends up parsing?

I claim that you'll have a better, more user-friendly program if you'll take the time to define the syntax explicitly.
Write down the syntax equations or draw the railroad-track diagrams, and code the parser using the
techniques I've shown you here. You'll end up with a better program, and it will be easier to write, to boot.

GETTING FANCY
OK, at this point we have a pretty nice lexical scanner that will break an input stream up into tokens. We could
use it as it stands and have a servicable compiler. But there are some other aspects of lexical scanning that
we need to cover.

The main consideration is <shudder> efficiency. Remember when we were dealing with single-character
tokens, every test was a comparison of a single character, Look, with a byte constant. We also used the Case
statement heavily.

With the multi-character tokens being returned by Scan, all those tests now become string comparisons. Much
slower. And not only slower, but more awkward, since there is no string equivalent of the Case statement in
**C. It seems especially wasteful to test for what used to be single characters ... the '=', '+', and other operators
... using string comparisons.

Using string comparison is not impossible ... Ron Cain used just that approach in writing Small C. Since we're
sticking to the KISS principle here, we would be truly justified in settling for this approach. But then I would
have failed to tell you about one of the key approaches used in "real" compilers.

You have to remember: the lexical scanner is going to be called a _LOT_! Once for every token in the whole
source program, in fact. Experiments have indicated that the average compiler spends anywhere from
20% to 40% of its time in the scanner routines. If there were ever a place where efficiency deserves real
consideration, this is it.

For this reason, most compiler writers ask the lexical scanner to do a little more work, by "tokenizing" the
input stream. The idea is to match every token against a list of acceptable keywords and operators, and
return unique codes for each one recognized. In the case of ordinary variable names or numbers, we just
return a code that says what kind of token they are, and save the actual string somewhere else.

One of the first things we're going to need is a way to identify keywords. We can always do it with successive
IF tests, but it surely would be nice if we had a general-purpose routine that could compare a given string with
a table of keywords. (By the way, we're also going to need such a routine later, for dealing with symbol
tables.) This usually presents a problem in **C, because standard **C doesn't allow for arrays of variable
lengths. It's a real bother to have to declare a different search routine for every table. **[snip]

First, modify your global declarations like this:**

/* Define Keywords and Token Types */
 static char *KWlist[] = { "IF","ELSE","ELSEIF","END" };

Next, insert the following new functions:**

**Add to Prototypes:
 int Lookup(char *, int);
 void display(char *);

int Lookup(char *s, int n) /* Table Lookup */
{ int i, found=0;

 i = n;
 while((i >= 0) && (found == 0))
 { if(strcmp(s, KWlist[i]) == 0)
 { found = 1;
 }
 else
 { i--;
 }
 }
 i++;
 return i; /* If the input string matches a table entry,

 return the entry index. If not, return a zero.*/
}
/*-------------------------------*/

void display(char *scan)
{ int i;

 i = Lookup(scan, 4);
 if(i > 0)
 { i--;
 printf("\tToken:%s\tKeyWord:%s\n",scan,KWlist[i]);
 }
}
/*-------------------------------*/

To test it, you can temporarily change the main program as follows:**

void main() /* Main Program */
{ char Token[20] = {0};

 Init();
 while(strcmp(Token, ".") != 0)
 { strcpy(Token, Scan());
 printf("%s\n", Token);
 if(Token[0] == '\n')
 { Fin();
 }
 display(Token); /* <---here */
 }
}
/*-------------------------------*/

**Note: the return codes from function Lookup() are their index+1 within the array KWlist[]. On exiting function
Lookup, the index is incremented, so that the keywords are represented by a positive number from 1 to 4 and a
'not found', or false, is represented by a 0.

OK, give this a try:

if else elseif end.

now try some others.

Now that we can recognize keywords, the next thing is to arrange to return codes for them. **[snip]
So what kind of code should we return? There are really only two reasonable choices. This seems like an ideal
application for the enumerated type. For example, you can define something like**

 enum SymType {IfSym, ElseSym, EndifSym,
EndSym, xIdent, Number, Operator};

and arrange to return a variable of this type. Let's give it a try. Insert the line above into your type definitions.
Now, add the two variable declarations:**

 int Token; /* Current Token */
 char Value[20]; /* String Token of Look */

Modify the scanner to read:**

**Change Prototype to:
 void Scan(void);

void Scan() /* Lexical Scanner */
{ int k;

 while(Look == '\n')
 { Fin();
 }
 if(isalpha(Look))
 { strcpy(Value, GetName());
 k = Lookup(Value, 4);
 if(k == 0)
 { Token = xIdent;
 }
 else
 { Token = (enum SymType)(k-1);
 }
 }
 else if(isdigit(Look))
 { strcpy(Value, GetNum());
 Token = Number;
 }
 else if(IsOp(Look))
 { strcpy(Value, GetOp());
 Token = Operator;
 }
 else
 { Value[0] = Look;
 Value[1] = '\0';
 Token = Operator;
 _GetChar();
 }
 SkipWhite();
}
/*-------------------------------*/

Finally, modify the main program to read:**

void main() /* Main Program */
{
 Init();
 while(Token != EndSym)
 { Scan();
 switch(Token)
 { case xIdent:
 printf("\tIdent\t");
 break;
 case Number:
 printf("\tNumber\t");
 break;
 case Operator:
 printf("\tOperator");
 break;
 case IfSym:
 case ElseSym:
 case EndifSym:
 case EndSym:
 printf("\tKeyword\t");
 break;
 default:
 break;
 }
 printf("\t%s\n", Value);
 }
}
/*-------------------------------*/

What we've done here is to replace the string Token used earlier with an enumerated type. Scan returns the
type in variable Token, and returns the string itself in the new variable Value.

OK, compile this and give it a whirl. If everything goes right, you should see that we are now recognizing
keywords.

**Try: if elseif else end
if abc=1 then else end

What we have now is working right, and it was easy to generate from what we had earlier. However, it still
seems a little "busy" to me. We can simplify things a bit by letting GetName, GetNum, GetOp, and Scan be
procedures working with the global variables Token and Value, thereby eliminating the local copies. It also
seems a little cleaner to move the table lookup into GetName. The new form for the four procedures is,
then:**

**Change Prototypes to:
 void GetName(void);
 void GetNum(void);
 void GetOp(void);

void GetName() /* Get an Identifier */
{ int k, ndx=0;

 Value[0] = '\0';
 if(! isalpha(Look))
 { Expected("Name");

 }
 while((isalnum(Look)) && (ndx < 8))
 { Value[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 k = Lookup(Value, 4);
 if(k == 0)
 { Token = xIdent;
 }
 else
 { Token = (enum SymType)(k-1);
 }
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{ int ndx=0;

 Value[0] = '\0';
 if(! isdigit(Look))
 { Expected("Integer");
 }
 while((isdigit(Look)) && (ndx < 16))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 Token = Number;
}
/*-------------------------------*/

void GetOp() /* Get an Operator */
{ int ndx=0;

 Value[0] = '\0';
 if(! IsOp(Look))
 { Expected("Operator");
 }
 while((IsOp(Look)) && (ndx < 10))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 Token = Operator;
}
/*-------------------------------*/

void Scan() /* Lexical Scanner */
{
 while(Look == '\n')
 { Fin();
 }

 if(isalpha(Look))
 { GetName();
 }
 else if(isdigit(Look))
 { GetNum();
 }
 else if(IsOp(Look))
 { GetOp();
 }
 else
 { Value[0] = Look;
 Value[1] = '\0';
 Token = Operator;
 _GetChar();
 }
 SkipWhite();
}
/*-------------------------------*/

**Recompile and try it again, make sure it's still working.

RETURNING A CHARACTER
Essentially every scanner I've ever seen that was written** used the mechanism of an enumerated type that
I've just described. It is certainly a workable mechanism, but it doesn't seem the simplest approach to me.

For one thing, the list of possible symbol types can get pretty long. Here, I've used just one symbol, "Operator,"
to stand for all of the operators, but I've seen other designs that actually return different codes for each one.

There is, of course, another simple type that can be returned as a code: the character. Instead of returning
the enumeration value 'Operator' for a '+' sign, what's wrong with just returning the character itself? A character
is just as good a variable for encoding the different token types, it can be used in case statements easily,
and it's sure a lot easier to type. What could be simpler?

Besides, we've already had experience with the idea of encoding keywords as single characters. Our previous
programs are already written that way, so using this approach will minimize the changes to what we've
already done.

Some of you may feel that this idea of returning character codes is too mickey-mouse. I must admit it gets a
little awkward for multi-character operators like '<='. If you choose to stay with the enumerated type, fine.
For the rest, I'd like to show you how to change what we've done above to support that approach.

First, you can delete the SymType declaration now ... we won't be needing that. And you can change the type
of Token to char.

 char Token; /* Current Token */

Next, to replace SymType, add the following :**

 static char KWcode[6] = { 'x','i','l','e','e' };

(I'll be encoding all idents with the single character 'x'.)

Lastly, modify Scan and its relatives as follows:**

void GetName() /* Get an Identifier */
{ int k, ndx=0;

 Value[0] = '\0';
 if(! isalpha(Look))
 { Expected("Name");
 }
 while((isalnum(Look)) && (ndx < 18))
 { Value[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 k = Lookup(Value, 4);
 Token = KWcode[k];
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{ int ndx=0;

 Value[0] = '\0';
 if(! isdigit(Look))
 { Expected("Integer");
 }
 while((isdigit(Look)) && (ndx < 10))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 Token = '#';
}
/*-------------------------------*/

void GetOp() /* Get an Operator */
{ int ndx=0;

 Value[0] = '\0';
 if(! IsOp(Look))
 { Expected("Operator");
 }
 while((IsOp(Look)) && (ndx < 10))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 if(strlen(Value) == 1)
 { Token = Value[0];
 }
 else
 { Token = '?';
 }
}
/*-------------------------------*/

void Scan() /* Lexical Scanner */
{

 while(Look == '\n')
 { Fin();
 }
 if(isalpha(Look))
 { GetName();
 }
 else if(isdigit(Look))
 { GetNum();
 }
 else if(IsOp(Look))
 { GetOp();
 }
 else
 { Value[0] = Look;
 Value[1] = '\0';
 Token = '?';
 _GetChar();
 }
 SkipWhite();
}
/*-------------------------------*/

void main() /* Main Program */
{
 Init();
 while(strcmp(Value, "END") != 0)
 { Scan();
 switch(Token)
 { case 'x':
 printf("\tIdent\t");
 break;
 case '#':
 printf("\tNumber\t");
 break;
 case 'i':
 case 'l':
 case 'e':
 printf("\tKeyword\t");
 break;
 default:
 printf("\tOperator");
 break;
 }
 printf("\t%s\n", Value);
 }
}
/*-------------------------------*/

This program should work the same as the previous version. A minor difference in structure, maybe, but
it seems more straightforward to me.
**Recompile and test as before.

DISTRIBUTED vs CENTRALIZED SCANNERS
The structure for the lexical scanner that I've just shown you is very conventional, and about 99% of all
compilers use something very close to it. This is not, however, the only possible structure, or even always
the best one.

The problem with the conventional approach is that the scanner has no knowledge of context. For example, it
can't distinguish between the assignment operator '=' and the relational operator '=' (perhaps that's why both C
and Pascal use different strings for the two). All the scanner can do is to pass the operator along to the
parser, which can hopefully tell from the context which operator is meant. Similarly, a keyword like 'IF' has no
place in the middle of a math expression, but if one happens to appear there, the scanner will see no problem
with it, and will return it to the parser, properly encoded as an 'IF'.

With this kind of approach, we are not really using all the information at our disposal. In the middle of an
expression, for example, the parser "knows" that there is no need to look for keywords, but it has no way of
telling the scanner that. So the scanner continues to do so. This, of course, slows down the compilation.

In real-world compilers, the designers often arrange for more information to be passed between parser and
scanner, just to avoid this kind of problem. But that can get awkward, and certainly destroys a lot of the
modularity of the structure.

The alternative is to seek some way to use the contextual information that comes from knowing where we
are in the parser. This leads us back to the notion of a distributed scanner, in which various portions of the
scanner are called depending upon the context.

In KISS, as in most languages, keywords ONLY appear at the beginning of a statement. In places like
expressions, they are not allowed. Also, with one minor exception (the multi-character relops) that is easily
handled, all operators are single characters, which means that we don't need GetOp at all.

So it turns out that even with multi-character tokens, we can still always tell from the current lookahead
character exactly what kind of token is coming, except at the very beginning of a statement.

Even at that point, the ONLY kind of token we can accept is an identifier. We need only to determine if that
identifier is a keyword or the target of an assignment statement.

We end up, then, still needing only GetName and GetNum, which are used very much as we've used them in
earlier installments.

It may seem at first to you that this is a step backwards, and a rather primitive approach. In fact, it is an
improvement over the classical scanner, since we're using the scanning routines only where they're really
needed. In places where keywords are not allowed, we don't slow things down by looking for them.

MERGING SCANNER AND PARSER
Now that we've covered all of the theory and general aspects of lexical scanning that we'll be needing, I'm
FINALLY ready to back up my claim that we can accomodate multi-character tokens with minimal change to
our previous work. To keep things short and simple I will restrict myself here to a subset of what we've done
before; I'm allowing only one control construct (the IF) and no Boolean expressions. That's enough to
demonstrate the parsing of both keywords and expressions. The extension to the full set of constructs should
be pretty apparent from what we've already done.

All the elements of the program to parse this subset, using single-character tokens, exist already in our
previous programs. I built it by judicious copying of these files, but I wouldn't dare try to lead you through that
process. Instead, to avoid any confusion, the whole program is shown below:**

**Begin with file: Cradle7B.c

**Add to Prototypes:
 char GetName(void); char GetNum(void);
 char *NewLabel(void); void PostLabel(char *);
 void Ident(void); void Factor(void);
 void SignedFactor(void); void Term1(void);
 void Term(void); void FirstTerm(void);
 void Expression(void); void Condition(void);

 void DoIf(void); void Assignment(void);
 void Block(void); void DoProgram(void);

char GetName() /* Get an Identifier */
{ char Name;

 while(Look == '\n')
 { Fin();
 }
 if(! isalpha(Look))
 { Expected("Name");
 }
 Name = toupper(Look);
 _GetChar();
 SkipWhite();
 return Name;
}
/*-------------------------------*/

char GetNum() /* Get a Number */
{ char Value;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 Value = Look;
 _GetChar();
 SkipWhite();
 return Value;
}
/*-------------------------------*/

char *NewLabel() /* Generate a Unique Label */
{ char S[6];
 static char Label[7];

 strcpy(Label, "L");
 sprintf(S, "%d", LCount);
 strcat(Label, S);
 LCount++;
 return Label;
}
/*-------------------------------*/

void PostLabel(char *string) /* Post a Label To Output */
{
 printf("%s:", string);
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{ char a_string[20];
 char Name[2] = {0,0};

 Name[0] = GetName();
 if(Look == '(')
 { Match('(');
 Match(')');
 strcpy(a_string, "call ");
 strcat(a_string, Name);
 EmitLn(a_string);
 }
 else
 { strcpy(a_string, "mov ax, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];
 char Value[2] = {0,0};

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { Ident();
 }
 else
 { Value[0] = GetNum();
 strcpy(a_string, "mov ax, ");
 strcat(a_string, Value);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

void SignedFactor() /* Parse and Translate the First Math Factor */
{
 if(IsAddop(Look))
 { _GetChar();
 SkipWhite();
 }
 Factor();
 if(Look == '-')
 { EmitLn("neg ax");
 }
}
/*-------------------------------*/

void Term1() /* Completion of Term Processing (called by Term and FirstTerm) */
{
 while(IsMulop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '*':

 Multiply();
 break;
 case '/':
 Divide();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
 Factor();
 Term1();
}
/*-------------------------------*/

void FirstTerm() /* Parse and Translate a Math Term */
{
 SignedFactor();
 Term1();
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
 FirstTerm();
 while(IsAddop(Look))
 { EmitLn("push ax");
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void Condition()
{
 EmitLn("Condition");
}
/*-------------------------------*/

void DoIf() /* Recognize and Translate an IF Construct */
{ char a_string[20];
 char L1[7], L2[7];

 Match('i');
 Condition();
 strcpy(L1, NewLabel());
 strcpy(L2, L1);
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 Block();
 if(Look == 'l')
 { Match('l');
 strcpy(L2, NewLabel());
 strcpy(a_string, "jmp ");
 strcat(a_string, L2);
 EmitLn(a_string);
 PostLabel(L1);
 Block();
 }
 PostLabel(L2);
 Match('e');
}
/*-------------------------------*/

void Assignment()
{ char a_string[20];
 char Name[2] = {0,0};

 Name[0] = GetName();
 Match('=');
 Expression();
 strcpy(a_string, "lea di, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 EmitLn("mov [di], ax");
}
/*-------------------------------*/

void Block() /* Recognize and Translate a Statement Block */
{
 while(strchr("el", Look) == 0)
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 case '\n':
 while(Look == '\n')
 { Fin();
 }
 break;
 default:
 Assignment();
 break;
 }
 }
}
/*-------------------------------*/

void DoProgram() /* Parse and Translate a Program */
{
 Block();
 if(Look != 'e')
 { Expected("end");
 }
 EmitLn("END");
}
/*-------------------------------*/

A couple of comments:

 (1) The form for the expression parser, using FirstTerm, etc., is a little different from what you've
 seen before. It's yet another variation on the same theme. Don't let it throw you ... the change
 is not required for what follows.

 (2) Note that, as usual, I had to add calls to Fin at strategic spots to allow for multiple lines.

Before we proceed to adding the scanner, first copy this file and verify that it does indeed parse things correctly.
Don't forget the "codes": 'i' for IF, 'l' for ELSE, and 'e' for END or ENDIF.
**Compile and try:

ia=bla=cee
ia=blia=cla=dea=fee

If the program works, then let's press on. In adding the scanner modules to the program, it helps to have a
systematic plan. In all the parsers we've written to date, we've stuck to a convention that the current
lookahead character should always be a non-blank character. We preload the lookahead character in Init,
and keep the "pump primed" after that. To keep the thing working right at newlines, we had to modify this a bit
and treat the newline as a legal token.

In the multi-character version, the rule is similar: The current lookahead character should always be left at the
BEGINNING of the next token, or at a newline.

The multi-character version is shown next. To get it, I've made the following changes:

 o Added the variables Token and Value, and the type definitions needed by Lookup.

 o Added the definitions of KWList and KWcode.

 o Added Lookup.

 o Replaced GetName and GetNum by their multi-character versions. (Note that the call to Lookup
 has been moved out of GetName, so that it will not be executed for calls within an
 expression.)

 o Created a new, vestigial Scan that calls GetName, then scans for keywords.

 o Created a new procedure, MatchString, that looks for a specific keyword. Note that, unlike
 Match, MatchString does NOT read the next keyword.

 o Modified Block to call Scan.

 o Changed the calls to Fin a bit. Fin is now called within GetName.

Here are the program changes:

**Add to Global Variables:
 char Token; /* Current Token */
 char Value[20]; /* String Token of Look */

/* Define Keywords and Token Types */
 static char *KWlist[] = { "IF","ELSE","ENDIF","END" };
 static char KWcode[6] = { 'x','i','l','e','e' };

**Changes to Prototypes:
 void GetName(void); void GetNum(void);
 int Lookup(char *,int); void Scan(void);
 void MatchString(char *);

void Fin() /* Skip a CRLF */
{
 if(Look == '\n')
 { _GetChar();
 }
 SkipWhite();
}
/*-------------------------------*/

int Lookup(char *s, int n) /* Table Lookup */
{ int i, found=0;

 i = n;
 while((i >= 0) && (found == 0))
 { if(strcmp(s, KWlist[i]) == 0)
 { found = 1;
 }
 else
 { i--;
 }
 }
 i++;
 return i; /* If the input string matches a table entry,

 return the entry index. If not, return a zero.*/
}
/*-------------------------------*/

void GetName() /* Get an Identifier */
{ int ndx=0;

 while(Look == '\n')
 { Fin();
 }
 if(! isalpha(Look))
 { Expected("Name");
 }
 Value[0] = '\0';
 while((isalnum(Look)) && (ndx < 18))
 { Value[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }

 Value[ndx] = '\0';
 SkipWhite();
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{ int ndx=0;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 Value[0] = '\0';
 while((isdigit(Look)) && (ndx < 10))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 Token = '#';
 SkipWhite();
}
/*-------------------------------*/

void Scan() /* Lexical Scanner */
{ int k;

 GetName();
 k = Lookup(Value, 4);
 Token = KWcode[k];
}
/*-------------------------------*/

void MatchString(char *string) /* Match a Specific Input String */
{ char a_string[20];

 if(strcmp(Value, string) != 0)
 { strcpy(a_string, "\"");
 strcat(a_string, string);
 strcat(a_string, "\"");
 Expected(a_string);
 }
}
/*-------------------------------*/

void Ident() /* Parse and Translate an Identifier */
{ char a_string[20];

 GetName();
 if(Look == '(')
 { Match('(');
 Match(')');
 strcpy(a_string, "call ");
 strcat(a_string, Value);
 EmitLn(a_string);
 }

 else
 { strcpy(a_string, "mov ax, ");
 strcat(a_string, Value);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{ char a_string[20];

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { Ident();
 }
 else
 { GetNum();
 strcpy(a_string, "mov ax, ");
 strcat(a_string, Value);
 EmitLn(a_string);
 }
}
/*-------------------------------*/

void DoIf() /* Recognize and Translate an IF Construct */
{ char a_string[20];
 char L1[7], L2[7];

 Condition();
 strcpy(L1, NewLabel());
 strcpy(L2, L1);
 strcpy(a_string, "jnz ");
 strcat(a_string, L1);
 EmitLn(a_string);
 Block();
 if(Token == 'l')
 { strcpy(L2, NewLabel());
 strcpy(a_string, "jmp ");
 strcat(a_string, L2);
 EmitLn(a_string);
 PostLabel(L1);
 Block();
 }
 PostLabel(L2);
 MatchString("ENDIF");
}
/*-------------------------------*/

void Assignment()
{ char a_string[20];
 char Name[10];

 strcpy(Name, Value);
 Match('=');
 Expression();
 strcpy(a_string, "lea di, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 EmitLn("mov [di], ax");
}
/*-------------------------------*/

void Block() /* Recognize and Translate a Statement Block */
{
 Scan();
 while(strchr("el", Token) == 0)
 { switch(Token)
 { case 'i':
 DoIf();
 break;
 default:
 Assignment();
 break;
 }
 Scan();
 }
}
/*-------------------------------*/

void DoProgram() /* Parse and Translate a Program */
{
 Block();
 MatchString("END");
 EmitLn("END");
}
/*-------------------------------*/

Compare this program with its single-character counterpart. I think you will agree that the differences are
minor. **Compile and try:**

if abc=def else abc=efg endif end
if a=b else if a=c else a=d endif a=e endif end

CONCLUSION
At this point, you have learned how to parse and generate code for expressions, Boolean expressions, and
control structures. You have now learned how to develop lexical scanners, and how to incorporate their
elements into a translator. You have still not seen ALL the elements combined into one program, but on the
basis of what we've done before you should find it a straightforward matter to extend our earlier programs to
include scanners.

We are very close to having all the elements that we need to build a real, functional compiler. There are still
a few things missing, notably procedure calls and type definitions. We will deal with those in the next few
sessions. Before doing so, however, I thought it would be fun to turn the translator above into a true compiler.
That's what we'll be doing in the next installment.

Up till now, we've taken a rather bottom-up approach to parsing, beginning with low-level constructs and
working our way up. In the next installment, I'll also be taking a look from the top down, and we'll discuss

how the structure of the translator is altered by changes in the language definition.

See you then.

INTRODUCTION
This is going to be a different kind of session than the others in our series on parsing and compiler
construction. For this session, there won't be any experiments to do or code to write. This once, I'd like to
just talk with you for a while. Mercifully, it will be a short session, and then we can take up where we left
off, hopefully with renewed vigor.

When I was in college, I found that I could always follow a prof's lecture a lot better if I knew where he was
going with it. I'll bet you were the same.

So I thought maybe it's about time I told you where we're going with this series: what's coming up in future
installments, and in general what all this is about. I'll also share some general thoughts concerning the
usefulness of what we've been doing.

THE ROAD HOME
So far, we've covered the parsing and translation of arithmetic expressions, Boolean expressions, and
combinations connected by relational operators. We've also done the same for control constructs. In all
of this we've leaned heavily on the use of top-down, recursive descent parsing, BNF definitions of the
syntax, and direct generation of assembly-language code. We also learned the value of such tricks as single-
character tokens to help us see the forest through the trees. In the last installment we dealt with lexical
scanning, and I showed you simple but powerful ways to remove the single-character barriers.

Throughout the whole study, I've emphasized the KISS philosophy ... Keep It Simple, Sidney ... and I hope by
now you've realized just how simple this stuff can really be. While there are for sure areas of compiler theory
that are truly intimidating, the ultimate message of this series is that in practice you can just politely sidestep
many of these areas. If the language definition cooperates or, as in this series, if you can define the
language as you go, it's possible to write down the language definition in BNF with reasonable ease. And, as
we've seen, you can crank out parse procedures from the BNF just about as fast as you can type.

As our compiler has taken form, it's gotten more parts, but each part is quite small and simple, and very
much like all the others.

At this point, we have many of the makings of a real, practical compiler. As a matter of fact, we already have
all we need to build a toy compiler for a language as powerful as, say, Tiny BASIC. In the next couple of
installments, we'll go ahead and define that language.

To round out the series, we still have a few items to cover.
These include:

 o Procedure calls, with and without parameters

 o Local and global variables

 o Basic types, such as character and integer types

 o Arrays

 o Strings

 o User-defined types and structures

 o Tree-structured parsers and intermediate languages

 o Optimization

These will all be covered in future installments. When we're finished, you'll have all the tools you need to
design and build your own languages, and the compilers to translate them.

I can't design those languages for you, but I can make some comments and recommendations. I've
already sprinkled some throughout past installments. You've seen, for example, the control constructs I
prefer.

These constructs are going to be part of the languages I build. I have three languages in mind at this point,
two of which you will see in installments to come:

TINY - A minimal, but usable language on the order of Tiny BASIC or Tiny C. It won't be very
 practical, but it will have enough power to let you write and run real programs that do
 something worthwhile.

KISS - The language I'm building for my own use. KISS is intended to be a systems
 programming language. It won't have strong typing or fancy data structures, but it will support
 most of the things I want to do with a higher-order language (HOL), except perhaps writing
 compilers.

I've also been toying for years with the idea of a HOL-like assembler, with structured control constructs
and HOL-like assignment statements. That, in fact, was the impetus behind my original foray into the jungles
of compiler theory. This one may never be built, simply because I've learned that it's actually easier to
implement a language like KISS, that only uses a subset of the CPU instructions. As you know, assembly
language can be bizarre and irregular in the extreme, and a language that maps one-for-one onto it can be a
real challenge. Still, I've always felt that the syntax used in conventional assemblers is dumb ... why is

 MOVE.L A,B

better, or easier to translate, than

 B=A ?

I think it would be an interesting exercise to develop a "compiler" that would give the programmer
complete access to and control over the full complement of the CPU instruction set, and would allow you to
generate programs as efficient as assembly language, without the pain of learning a set of mnemonics. Can
it be done? I don't know. The real question may be, "Will the resulting language be any easier to write than
assembly"? If not, there's no point in it. I think that it can be done, but I'm not completely sure yet how the
syntax should look.

Perhaps you have some comments or suggestions on this one. I'd love to hear them.

You probably won't be surprised to learn that I've already worked ahead in most of the areas that we will cover.
I have some good news: Things never get much harder than they've been so far. It's possible to build a
complete, working compiler for a real language, using nothing but the same kinds of techniques you've learned
so far. And THAT brings up some interesting questions.

WHY IS IT SO SIMPLE?
Before embarking on this series, I always thought that compilers were just naturally complex computer
programs ... the ultimate challenge. Yet the things we have done here have usually turned out to be quite
simple, sometimes even trivial.

For awhile, I thought is was simply because I hadn't yet gotten into the meat of the subject. I had only
covered the simple parts. I will freely admit to you that, even when I began the series, I wasn't sure how far
we would be able to go before things got too complex to deal with in the ways we have so far. But at this
point I've already been down the road far enough to see the end of it. Guess what?

 THERE ARE NO HARD PARTS!

Then, I thought maybe it was because we were not generating very good object code. Those of you who
have been following the series and trying sample compiles know that, while the code works and is rather
foolproof, its efficiency is pretty awful. I figured that if we were concentrating on turning out tight code, we
would soon find all that missing complexity.

To some extent, that one is true. In particular, my first few efforts at trying to improve efficiency introduced
complexity at an alarming rate. But since then I've been tinkering around with some simple optimizations and
I've found some that result in very respectable code quality, WITHOUT adding a lot of complexity.

Finally, I thought that perhaps the saving grace was the "toy compiler" nature of the study. I have made no
pretense that we were ever going to be able to build a compiler to compete with Borland and Microsoft. And
yet, again, as I get deeper into this thing the differences are starting to fade away.

Just to make sure you get the message here, let me state it flat out:

 USING THE TECHNIQUES WE'VE USED HERE, IT IS POSSIBLE TO BUILD A
 PRODUCTION-QUALITY, WORKING COMPILER WITHOUT ADDING A LOT OF COMPLEXITY
 TO WHAT WE'VE ALREADY DONE.

Since the series began I've received some comments from you. Most of them echo my own thoughts: "This
is easy! Why do the textbooks make it seem so hard?" Good question.

Recently, I've gone back and looked at some of those texts again, and even bought and read some new ones.
Each time, I come away with the same feeling: These guys have made it seem too hard.

What's going on here? Why does the whole thing seem difficult in the texts, but easy to us? Are we that
much smarter than Aho, Ullman, Brinch Hansen, and all the rest?

Hardly. But we are doing some things differently, and more and more I'm starting to appreciate the value of
our approach, and the way that it simplifies things. Aside from the obvious shortcuts that I outlined in Part I,
like single-character tokens and console I/O, we have made some implicit assumptions and done some things
differently from those who have designed compilers in the past. As it turns out, our approach makes life a lot
easier.

So why didn't all those other guys use it?

You have to remember the context of some of the earlier compiler development. These people were working
with very small computers of limited capacity. Memory was very limited, the CPU instruction set was
minimal, and programs ran in batch mode rather than interactively. As it turns out, these caused some key
design decisions that have really complicated the designs. Until recently, I hadn't realized how much of
classical compiler design was driven by the available hardware.

Even in cases where these limitations no longer apply, people have tended to structure their programs in
the same way, since that is the way they were taught to do it.

In our case, we have started with a blank sheet of paper. There is a danger there, of course, that you will end
up falling into traps that other people have long since learned to avoid. But it also has allowed us to take
different approaches that, partly by design and partly by pure dumb luck, have allowed us to gain simplicity.

Here are the areas that I think have led to complexity in the past:

 o Limited RAM Forcing Multiple Passes

 I just read "Brinch Hansen on Pascal Compilers" (an excellent book, BTW). He
 developed a Pascal compiler for a PC, but he started the effort in 1981 with a 64K system, and
 so almost every design decision he made was aimed at making the compiler fit into RAM.

 To do this, his compiler has three passes, one of which is the lexical scanner. There is no
 way he could, for example, use the distributed scanner I introduced in the last installment,
 because the program structure wouldn't allow it. He also required not one but two
 intermediate languages, to provide the communication between phases.

 All the early compiler writers had to deal with this issue: Break the compiler up into enough
 parts so that it will fit in memory. When you have multiple passes, you need to add data
 structures to support the information that each pass leaves behind for the next. That adds
 complexity, and ends up driving the design. Lee's book, "The Anatomy of a Compiler,"
 mentions a FORTRAN compiler developed for an IBM 1401. It had no fewer than 63 separate
 passes! Needless to say, in a compiler like this the separation into phases would
 dominate the design.

 Even in situations where RAM is plentiful, people have tended to use the same
 techniques because that is what they're familiar with. It wasn't until Turbo Pascal came
 along that we found how simple a compiler could be if you started with different assumptions.

 o Batch Processing

 In the early days, batch processing was the only choice ... there was no interactive computing.
 Even today, compilers run in essentially batch mode.

 In a mainframe compiler as well as many micro compilers, considerable effort is expended
 on error recovery ... it can consume as much as 30-40% of the compiler and completely
 drive the design. The idea is to avoid halting on the first error, but rather to keep going at all
 costs, so that you can tell the programmer about as many errors in the whole program as
 possible.

 All of that harks back to the days of the early mainframes, where turnaround time was
 measured in hours or days, and it was important to squeeze every last ounce of information
 out of each run.

 In this series, I've been very careful to avoid the issue of error recovery, and instead our compiler
 simply halts with an error message on the first error. I will frankly admit that it was mostly
 because I wanted to take the easy way out and keep things simple. But this approach,
 pioneered by Borland in Turbo Pascal, also has a lot going for it anyway. Aside from keeping
 the compiler simple, it also fits very well with the idea of an interactive system. When
 compilation is fast, and especially when you have an editor such as Borland's that will take
 you right to the point of the error, then it makes a lot of sense to stop there, and just restart
 the compilation after the error is fixed.

 o Large Programs

 Early compilers were designed to handle large programs ... essentially infinite ones. In those
 days there was little choice; the idea of subroutine libraries and separate compilation
 were still in the future. Again, this assumption led to multi-pass designs and
 intermediate files to hold the results of partial processing.

 Brinch Hansen's stated goal was that the compiler should be able to compile itself. Again,
 because of his limited RAM, this drove him to a multi-pass design. He needed as little
 resident compiler code as possible, so that the necessary tables and other data structures
 would fit into RAM.

 I haven't stated this one yet, because there hasn't been a need ... we've always just read and
 written the data as streams, anyway. But for the record, my plan has always been that,
 in a production compiler, the source and object data should all coexist in RAM with the
 compiler, a la the early Turbo Pascals. That's why I've been careful to keep routines like
 GetChar and Emit as separate routines, in spite of their small size. It will be easy to

 change them to read to and write from memory.

 o Emphasis on Efficiency

 John Backus has stated that, when he and his colleagues developed the original FORTRAN
 compiler, they KNEW that they had to make it produce tight code. In those days, there was a
 strong sentiment against HOLs and in favor of assembly language, and efficiency was the
 reason. If FORTRAN didn't produce very good code by assembly standards, the users
 would simply refuse to use it. For the record, that FORTRAN compiler turned out to be one
 of the most efficient ever built, in terms of code quality. But it WAS complex!

 Today, we have CPU power and RAM size to spare, so code efficiency is not so much of
 an issue. By studiously ignoring this issue, we have indeed been able to Keep It Simple.
 Ironically, though, as I have said, I have found some optimizations that we can add to the
 basic compiler structure, without having to add a lot of complexity. So in this case we get to
 have our cake and eat it too: we will end up with reasonable code quality, anyway.

 o Limited Instruction Sets

 The early computers had primitive instruction sets. Things that we take for granted, such as
 stack operations and indirect addressing, came only with great difficulty.

 Example: In most compiler designs, there is a data structure called the literal pool. The
 compiler typically identifies all literals used in the program, and collects them into a single
 data structure. All references to the literals are done indirectly to this pool. At the end
 of the compilation, the compiler issues commands to set aside storage and initialize the
 literal pool.

 We haven't had to address that issue at all. When we want to load a literal, we just do it, in
 line, as in

 MOV AX, 3

 There is something to be said for the use of a literal pool, particularly on a machine like the
 8086 where data and code can be separated. Still, the whole thing adds a fairly large
 amount of complexity with little in return.

 Of course, without the stack we would be lost. In a micro, both subroutine calls and
 temporary storage depend heavily on the stack, and we have used it even more than
 necessary to ease expression parsing.

 o Desire for Generality

 Much of the content of the typical compiler text is taken up with issues we haven't addressed
 here at all ... things like automated translation of grammars, or generation of LALR parse
 tables. This is not simply because the authors want to impress you. There are good,
 practical reasons why the subjects are there.

 We have been concentrating on the use of a recursive-descent parser to parse a deterministic
 grammar, i.e., a grammar that is not ambiguous and, therefore, can be parsed with one level
 of lookahead. I haven't made much of this limitation, but the fact is that this represents a
 small subset of possible grammars. In fact, there is an infinite number of grammars that we
 can't parse using our techniques. The LR technique is a more powerful one, and can deal with
 grammars that we can't.

 In compiler theory, it's important to know how to deal with these other grammars, and how
 to transform them into grammars that are easier to deal with. For example, many (but not

 all) ambiguous grammars can be transformed into unambiguous ones. The way to do this is
 not always obvious, though, and so many people have devoted years to develop ways to
 transform them automatically.

 In practice, these issues turn out to be considerably less important. Modern languages tend
 to be designed to be easy to parse, anyway. That was a key motivation in the design of
 Pascal. Sure, there are pathological grammars that you would be hard pressed to write
 unambiguous BNF for, but in the real world the best answer is probably to avoid those
 grammars!

 In our case, of course, we have sneakily let the language evolve as we go, so we haven't
 painted ourselves into any corners here. You may not always have that luxury. Still, with a
 little care you should be able to keep the parser simple without having to resort to automatic
 translation of the grammar.

We have taken a vastly different approach in this series. We started with a clean sheet of paper, and
developed techniques that work in the context that we are in; that is, a single-user PC with rather ample CPU
power and RAM space. We have limited ourselves to reasonable grammars that are easy to parse, we have
used the instruction set of the CPU to advantage, and we have not concerned ourselves with efficiency. THAT's
why it's been easy.

Does this mean that we are forever doomed to be able to build only toy compilers? No, I don't think so. As
I've said, we can add certain optimizations without changing the compiler structure. If we want to process
large files, we can always add file buffering to do that. These things do not affect the overall program
design.

And I think that's a key factor. By starting with small and limited cases, we have been able to concentrate
on a structure for the compiler that is natural for the job. Since the structure naturally fits the job, it is
almost bound to be simple and transparent. Adding capability doesn't have to change that basic structure.
We can simply expand things like the file structure or add an optimization layer. I guess my feeling is that,
back when resources were tight, the structures people ended up with were artificially warped to make them
work under those conditions, and weren't optimum structures for the problem at hand.

CONCLUSION
Anyway, that's my arm-waving guess as to how we've been able to keep things simple. We started with
something simple and let it evolve naturally, without trying to force it into some traditional mold.

We're going to press on with this. I've given you a list of the areas we'll be covering in future installments.
With those installments, you should be able to build complete, working compilers for just about any
occasion, and build them simply. If you REALLY want to build production-quality compilers, you'll be able to do
that, too.

For those of you who are chafing at the bit for more parser code, I apologize for this digression. I just thought
you'd like to have things put into perspective a bit. Next time, we'll get back to the mainstream of the
tutorial.

So far, we've only looked at pieces of compilers, and while we have many of the makings of a complete
language, we haven't talked about how to put it all together. That will be the subject of our next two
installments. Then we'll press on into the new subjects I listed at the beginning of this installment.

See you then.

INTRODUCTION
In the previous installments, we have learned many of the techniques required to build a full-blown
compiler. We've done both assignment statements (with Boolean and arithmetic expressions), relational
operators, and control constructs. We still haven't addressed procedure or function calls, but even so we

could conceivably construct a mini-language without them. I've always thought it would be fun to see just
how small a language one could build that would still be useful. We're ALMOST in a position to do that
now. The problem is: though we know how to parse and translate the constructs, we still don't know quite
how to put them all together into a language.

In those earlier installments, the development of our programs had a decidedly bottom-up flavor. In the case
of expression parsing, for example, we began with the very lowest level constructs, the individual
constants and variables, and worked our way up to more complex expressions.

Most people regard the top-down design approach as being better than the bottom-up one. I do too, but the
way we did it certainly seemed natural enough for the kinds of things we were parsing.

You mustn't get the idea, though, that the incremental approach that we've been using in all these tutorials
is inherently bottom-up. In this installment I'd like to show you that the approach can work just as well when
applied from the top down ... maybe better. We'll consider languages such as C and Pascal, and see how
complete compilers can be built starting from the top.

In the next installment, we'll apply the same technique to build a complete translator for a subset of the KISS
language, which I'll be calling TINY. But one of my goals for this series is that you will not only be able to see
how a compiler for TINY or KISS works, but that you will also be able to design and build compilers for your
own languages. The C and Pascal examples will help. One thing I'd like you to see is that the natural
structure of the compiler depends very much on the language being translated, so the simplicity and ease of
construction of the compiler depends very much on letting the language set the program structure.

It's a bit much to produce a full C or Pascal compiler here, and we won't try. But we can flesh out the top
levels far enough so that you can see how it goes.

Let's get started.

THE TOP LEVEL
One of the biggest mistakes people make in a top-down design is failing to start at the true top. They think
they know what the overall structure of the design should be, so they go ahead and write it down.

Whenever I start a new design, I always like to do it at the absolute beginning. In program design language
(PDL), this top level looks something like:

 begin
 solve the problem
 end

OK, I grant you that this doesn't give much of a hint as to what the next level is, but I like to write it down
anyway, just to give me that warm feeling that I am indeed starting at the top.

For our problem, the overall function of a compiler is to compile a complete program. Any definition of the
language, written in BNF, begins here. What does the top level BNF look like? Well, that depends quite a bit
on the language to be translated. Let's take a look at Pascal.

THE STRUCTURE OF PASCAL
Most texts for Pascal include a BNF or "railroad-track" definition of the language. Here are the first few
lines of one:**

 <program> = <program-header> <block> '.'

 <program-header> = PROGRAM <ident>

 <block> = <declarations> <statements>

We can write recognizers to deal with each of these elements, just as we've done before. For each one, we'll
use our familiar single-character tokens to represent the input, then flesh things out a little at a time. Let's
begin with the first recognizer: the program itself.

To translate this, we'll start with a fresh copy of the Cradle. Since we're back to single-character names, we'll
just use a 'p' to stand for 'PROGRAM.'

**Begin with file: Cradle9A.c

To a fresh copy of the cradle, add the following code, and insert a call to it from the main program:**

**Add to Prototypes:
 void Prog(void); void Prolog(char);
 void Epilog(char);

void Prog() /* Parse and Translate A Program */
{ char Name;

 Match('p'); /* Handles program header part */
 Name = GetName();
 Prolog('Name');
 Match('.');
 Epilog('Name');
}
/*-------------------------------*/

The procedures Prolog and Epilog perform whatever is required to let the program interface with the operating
system, so that it can execute as a program. Needless to say, this part will be VERY OS-dependent.
Remember, I've been emitting code for a 68000 running under the OS I use, which is SK*DOS. I realize most
of you are using PC's and would rather see something else, but I'm in this thing too deep to change now!

Anyhow, SK*DOS is a particularly easy OS to interface to. Here is the code for Prolog and Epilog:**

void Prolog() /* Write the Prolog */
{
 EmitLn("WARMST EQU $A01E");
}
/*-------------------------------*/

void Epilog(char Name) /* Write the Epilog */
{ char a_string[10];

 EmitLn("DC WARMST");
 strcpy(a_string, "END ");
 a_string[4] = Name;
 EmitLn(a_string);
}
/*-------------------------------*/

As usual, add this code and try out the "compiler." At this point, there is only one legal input:

 px. (where x is any single letter, the program name)

Well, as usual our first effort is rather unimpressive, but by now I'm sure you know that things will get more

interesting. There is one important thing to note: THE OUTPUT IS A WORKING, COMPLETE, AND
EXECUTABLE PROGRAM (at least after it's assembled).

This is very important. The nice feature of the top-down approach is that at any stage you can compile a
subset of the complete language and get a program that will run on the target machine. From here on, then,
we need only add features by fleshing out the language constructs. It's all very similar to what we've been
doing all along, except that we're approaching it from the other end.

FLESHING IT OUT
To flesh out the compiler, we only have to deal with language features one by one. I like to start with a stub
procedure that does nothing, then add detail in incremental fashion. Let's begin by processing a block, in
accordance with its PDL above. We can do this in two stages. First, add the null procedure:**

**Add to Prototypes:
 void DoBlock(char); void Declarations(void);
 void Statements(void); void Labels(void);
 void Constants(void); void Types(void);
 void Variables(void); void DoProcedure(void);
 void DoFunction(void);

void DoBlock(char Name) /* Parse and Translate a Pascal Block */
{
}
/*-------------------------------*/

and modify Prog to read:

void Prog() /* Parse and Translate A Program */
{ char Name;

 Match('p'); /* Handles program header part */
 Name = GetName();
 Prolog();
 DoBlock(Name);
 Match('.');
 Epilog(Name);
}
/*-------------------------------*/

That certainly shouldn't change the behavior of the program, and it doesn't. But now the definition of Prog is
complete, and we can proceed to flesh out DoBlock. That's done right from its BNF definition:

void DoBlock(char Name) /* Parse and Translate a Pascal Block */
{ char a_string[2] = {0,0};

 a_string[0] = Name;
 Declarations();
 PostLabel(a_string);
 Statements();
}
/*-------------------------------*/

The procedure PostLabel was defined in the installment on branches.**

I probably need to explain the reason for inserting the label where I have. It has to do with the operation of

SK*DOS. Unlike some OS's, SK*DOS allows the entry point to the main program to be anywhere in the
program. All you have to do is to give that point a name. The call to PostLabel puts that name just before the
first executable statement in the main program. How does SK*DOS know which of the many labels is the
entry point, you ask? It's the one that matches the END statement at the end of the program.

OK, now we need stubs for the procedures Declarations and Statements. Make them null procedures as
we did before.**

void Statements()
{
}
/*-------------------------------*/

void Declarations()
{
}
/*-------------------------------*/

Does the program still run the same? Then we can move on to the next stage.

DECLARATIONS
The BNF for **declarations is:

 <declarations> = (<label list> |
 <constant list> |
 <type list> |
 <variable list> |
 <procedure> |
 <function>)*

(Note that I'm using the more liberal definition used by Turbo Pascal. In the standard Pascal definition, each
of these parts must be in a specific order relative to the rest.)

As usual, let's let a single character represent each of these declaration types. The new form of Declarations
is:**

void Declarations() /* Parse and Translate the Declaration Part */
{
 while(strchr("lctvpf", Look)
 { switch(Look)
 { case 'l':
 Labels();
 break;
 case 'c':
 Constants();
 break;
 case 't':
 Types();
 break;
 case 'v':
 Variables();
 break;
 case 'p':
 DoProcedure();
 break;
 case 'f':

 DoFunction();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

Of course, we need stub procedures for each of these declaration types. This time, they can't quite be null
procedures, since otherwise we'll end up with an infinite While loop. At the very least, each recognizer must
eat the character that invokes it. Insert the following procedures:**

void Labels() /* Process Label Statement */
{
 Match('l');
}
/*-------------------------------*/

void Constants() /* Process Const Statement */
{
 Match('c');
}
/*-------------------------------*/

void Types() /* Process Type Statement */
{
 Match('t');
}
/*-------------------------------*/

void Variables() /* Process Var Statement */
{
 Match('v');
}
/*-------------------------------*/

void DoProcedure() /* Process Procedure Definition */
{
 Match('p');
}
/*-------------------------------*/

void DoFunction() /* Process Function Definition */
{
 Match('f');
}
/*-------------------------------*/

Now try out the compiler with a few representative inputs. You can mix the declarations any way you like, as
long as the last character in the program is '.' to indicate the end of the program. Of course, none of
the declarations actually declare anything, so you don't need (and can't use) any characters other than those

standing for the keywords.

We can flesh out the statement part in a similar way. The BNF for it is:**

 <statements> = <compound statement>

 <compound statement> = BEGIN <statement>
 (';' <statement>) END

Note that statements can begin with any identifier except END. So the first stub form of procedure Statements
is:**

void Statements() /* Parse and Translate the Statement Part */
{
 Match('b');
 while(Look != 'e')
 { _GetChar();
 }
 Match('e');
}
/*-------------------------------*/

At this point the compiler will accept any number of declarations, followed by the BEGIN block of the
main program. This block itself can contain any characters at all (except an END), but it must be present.

The simplest form of input is now

 'pxbe.'

Try it. Also try some combinations of this. Make some deliberate errors and see what happens.

At this point you should be beginning to see the drill. We begin with a stub translator to process a program, then
we flesh out each procedure in turn, based upon its BNF definition. Just as the lower-level BNF definitions
add detail and elaborate upon the higher-level ones, the lower-level recognizers will parse more detail of the
input program. When the last stub has been expanded, the compiler will be complete. That's top-down
design/implementation in its purest form.

You might note that even though we've been adding procedures, the output of the program hasn't changed.
That's as it should be. At these top levels there is no emitted code required. The recognizers are
functioning as just that: recognizers. They are accepting input sentences, catching bad ones, and channeling
good input to the right places, so they are doing their job. If we were to pursue this a bit longer, code would
start to appear.

The next step in our expansion should probably be procedure Statements. The Pascal definition is:

 <statement> ::= <simple statement> | <structured statement>

 <simple statement> ::= <assignment> | <procedure call> | null

 <structured statement> ::= <compound statement> |
 <if statement> |
 <case statement> |
 <while statement> |
 <repeat statement> |
 <for statement> |
 <with statement>

These are starting to look familiar. As a matter of fact, you have already gone through the process of parsing
and generating code for both assignment statements and control structures. This is where the top level meets
our bottom-up approach of previous sessions. The constructs will be a little different from those we've been
using for KISS, but the differences are nothing you can't handle.

I think you can get the picture now as to the procedure. We begin with a complete BNF description of the
language. Starting at the top level, we code up the recognizer for that BNF statement, using stubs for
the next-level recognizers. Then we flesh those lower-level statements out one by one.

As it happens, the definition of Pascal is very compatible with the use of BNF, and BNF descriptions of the
language abound. Armed with such a description, you will find it fairly straightforward to continue the
process we've begun.

You might have a go at fleshing a few of these constructs out, just to get a feel for it. I don't expect you to
be able to complete a Pascal compiler here ... there are too many things such as procedures and types
that we haven't addressed yet ... but it might be helpful to try some of the more familiar ones. It will do you
good to see executable programs coming out the other end.

If I'm going to address those issues that we haven't covered yet, I'd rather do it in the context of KISS. We're
not trying to build a complete Pascal compiler just yet, so I'm going to stop the expansion of Pascal here.
Let's take a look at a very different language.

THE STRUCTURE OF C
The C language is quite another matter, as you'll see. Texts on C rarely include a BNF definition of the
language. Probably that's because the language is quite hard to write BNF for.

One reason I'm showing you these structures now is so that I can impress upon you these two facts:

 (1) The definition of the language drives the structure of the compiler. What works for one
 language may be a disaster for another. It's a very bad idea to try to force a given
 structure upon the compiler. Rather, you should let the BNF drive the structure, as we have
 done here.

 (2) A language that is hard to write BNF for will probably be hard to write a compiler for, as
 well. C is a popular language, and it has a reputation for letting you do virtually
 anything that is possible to do. Despite the success of Small C, C is _NOT_ an easy
 language to parse.

A C program has less structure than its Pascal counterpart. At the top level, everything in C is a static
declaration, either of data or of a function. We can capture this thought like this:**

 <program> = (<global declaration>)*

 <global declaration> = <data declaration> |
 <function>

In Small C, functions can only have the default type int, which is not declared. This makes the input easy to
parse: the first token is either "int," "char," or the name of a function. In Small C, the preprocessor
commands are also processed by the compiler proper, so the syntax becomes:**

 <global declaration> = '#' <preprocessor command> |
 'int' <data list> |
 'char' <data list> |
 <ident> <function body> |

Although we're really more interested in full C here, I'll show you the code corresponding to this top-level
structure for Small C.**

void Prog() /* Parse and Translate A Program */
{ char Name, eof=255;

 while(Look != eof)
 { switch(Look)
 { case '#':
 PreProc();
 break;
 case 'i':
 IntDecl();
 break;
 case 'c':
 CharDecl();
 break;
 default:
 DoFunction();
 break;
 }
 }
}
/*-------------------------------*/

Note that I've had to use a ^Z to indicate the end of the source. C has no keyword such as END or the '.' to
otherwise indicate the end.

With full C, things aren't even this easy. The problem comes about because in full C, functions can also have
types. So when the compiler sees a keyword like "int," it still doesn't know whether to expect a data
declaration or a function definition. Things get more complicated since the next token may not be a name ...
it may start with an '*' or '(', or combinations of the two.

More specifically, the BNF for full C begins with:**

 <program> = (<top-level decl>)*

 <top-level decl> = <function def> | <data decl>

 <data decl> = [<class>] <type> <decl-list>

 <function def> = [<class>] [<type>] <function decl>

You can now see the problem: The first two parts of the declarations for data and functions can be the
same. Because of the ambiguity in the grammar as written above, it's not a suitable grammar for a
recursive-descent parser. Can we transform it into one that is suitable? Yes, with a little work. Suppose we
write it this way:**

 <top-level decl> = [<class>] <decl>

 <decl> = <type> <typed decl> | <function decl>

 <typed decl> = <data list> | <function decl>

We can build a parsing routine for the class and type definitions, and have them store away their
findings and go on, without their ever having to "know" whether a function or a data declaration is being

processed.

To begin, key in the following version of the main program:**

void main() /* Main Program */
{ char eof=255; /* ^Z */

 Init();
 while(Look != eof)
 { GetClass();
 GetType();
 TopDecl();
 }
}
/*-------------------------------*/

For the first round, just make the three procedures stubs that do nothing _BUT_ call GetChar.**

**Add to Prototypes:
 void TopDecl(void); void GetType(void);
 void GetClass(void); void CharDecl(void);
 void IntDecl(void); void PreProc(void);

void GetClass()
{
 _GetChar();
}
/*-------------------------------*/

void GetType()
{
 _GetChar();
}
/*-------------------------------*/

void TopDecl()
{
 _GetChar();
}
/*-------------------------------*/

void PreProc()
{
}
/*-------------------------------*/

void IntDecl()
{
}
/*-------------------------------*/

void CharDecl()
{
}
/*-------------------------------*/

Does this program work? Well, it would be hard put NOT to, since we're not really asking it to do anything. It's

been said that a C compiler will accept virtually any input without choking. It's certainly true of THIS compiler,
since in effect all it does is to eat input characters until it finds a ^Z.

Next, let's make GetClass do something worthwhile. Declare the global variable**

**Add to Global Vars:
 char Class;

and change GetClass to do the following:**

void GetClass() /* Get a Storage Class Specifier */
{
 if(strchr("axs", Look))
 { Class = Look;
 _GetChar();
 }
 else
 { Class = 'a';
 }
}
/*-------------------------------*/

Here, I've used three single characters to represent the three storage classes "auto," "extern," and "static."
These are not the only three possible classes ... there are also "register" and "typedef," but this should give
you the picture. Note that the default class is "auto."

We can do a similar thing for types. Enter the following procedure next:

void GetType() /* Get a Type Specifier */
{
 Typ = ' ';
 if(Look == 'u')
 { Sign = 'u';
 Typ = 'i';
 _GetChar();
 }
 else
 { Sign = 's';
 }
 if(strchr("ilc", Look))
 { Typ = Look;
 _GetChar();
 }
}
/*-------------------------------*/

Note that you must add two more global variables, Sign and Typ.

**Add to Global Vars:
 char Typ;
 char Sign;

With these two procedures in place, the compiler will process the class and type definitions and store away their
findings. We can now process the rest of the declaration.

We are by no means out of the woods yet, because there are still many complexities just in the definition of the
type, before we even get to the actual data or function names. Let's pretend for the moment that we have
passed all those gates, and that the next thing in the input stream is a name. If the name is followed by a left

paren, we have a function declaration. If not, we have at least one data item, and possibly a list, each element
of which can have an initializer.

Insert the following version of TopDecl:**

void TopDecl() /* Process a Top-Level Declaration */
{ char Name;

 Name = GetName();
 if(Look == '(')
 { DoFunc(Name);
 }
 else
 { DoData(Name);
 }
}
/*-------------------------------*/

(Note that, since we have already read the name, we must pass it along to the appropriate routine.)

Finally, add the two procedures DoFunc and DoData:**

**Add to Prototypes:
 void DoFunc(char n);
 void DoData(char);

void DoFunc(char n) /* Process a Function Definition */
{
 Match('(');
 Match(')');
 Match('{');
 Match('}');

 if(Typ == ' ')
 { Typ = 'i';
 }
 printf("%c %c %c function %c\n", Class,Sign,Typ,n);
 Match(';');
}
/*-------------------------------*/

void DoData(char n) /* Process a Data Declaration */
{
 if(Typ == ' ')
 { Expected("Type declaration");
 }
 printf("%c %c %c data %c\n", Class,Sign,Typ,n);
 while(Look == ',')
 { Match(',');
 n = GetName();
 printf("%c %c %c data %c\n", Class,Sign,Typ,n);
 }
 Match(';');
}
/*-------------------------------*/

Since we're still a long way from producing executable code, I decided to just have these two routines tell us
what they found.

OK, give this program a try. For data declarations, it's OK to give a list separated by commas. We can't
process initializers as yet. We also can't process argument lists for the functions, but the "(){}" characters
should be there.

**Try: aucf(){};^Z
auia,b,c;^Z
xla,b,c;^Z

We're still a _VERY_ long way from having a C compiler, but what we have is starting to process the right kinds
of inputs, and is recognizing both good and bad inputs. In the process, the natural structure of the compiler
is starting to take form.

Can we continue this until we have something that acts more like a compiler. Of course we can. Should we?
That's another matter. I don't know about you, but I'm beginning to get dizzy, and we've still got a long way to
go to even get past the data declarations.

At this point, I think you can see how the structure of the compiler evolves from the language definition.
The structures we've seen for our two examples, Pascal and C, are as different as night and day. Pascal was
designed at least partly to be easy to parse, and that's reflected in the compiler. In general, in Pascal there is
more structure and we have a better idea of what kinds of constructs to expect at any point. In C, on the other
hand, the program is essentially a list of declarations, terminated only by the end of file.

We could pursue both of these structures much farther, but remember that our purpose here is not to
build a Pascal or a C compiler, but rather to study compilers in general. For those of you who DO want to deal
with Pascal or C, I hope I've given you enough of a start so that you can take it from here (although you'll
soon need some of the stuff we still haven't covered yet, such as typing and procedure calls). For the rest of
you, stay with me through the next installment. There, I'll be leading you through the development of a complete
compiler for TINY, a subset of KISS.

See you then.

INTRODUCTION
In the last installment, I showed you the general idea for the top-down development of a compiler. I gave
you the first few steps of the process for compilers for Pascal and C, but I stopped far short of pushing it
through to completion. The reason was simple: if we're going to produce a real, functional compiler for any
language, I'd rather do it for KISS, the language that I've been defining in this tutorial series.

In this installment, we're going to do just that, for a subset of KISS which I've chosen to call TINY.

The process will be essentially that outlined in Installment IX, except for one notable difference. In that
installment, I suggested that you begin with a full BNF description of the language. That's fine for
something like Pascal or C, for which the language definition is firm. In the case of TINY, however, we don't
yet have a full description ... we seem to be defining the language as we go. That's OK. In fact, it's
preferable, since we can tailor the language slightly as we go, to keep the parsing easy.

So in the development that follows, we'll actually be doing a top-down development of BOTH the language
and its compiler. The BNF description will grow along with the compiler.

In this process, there will be a number of decisions to be made, each of which will influence the BNF and
therefore the nature of the language. At each decision point I'll try to remember to explain the decision and
the rationale behind my choice. That way, if you happen to hold a different opinion and would prefer a different
option, you can choose it instead. You now have the background to do that. I guess the important thing to
note is that nothing we do here is cast in concrete. When YOU'RE designing YOUR language, you should
feel free to do it YOUR way.

Many of you may be asking at this point: Why bother starting over from scratch? We had a working subset of
KISS as the outcome of Installment VII (lexical scanning). Why not just extend it as needed? The answer is
threefold. First of all, I have been making a number of changes to further simplify the program ... changes
like encapsulating the code generation procedures, so that we can convert to a different target machine
more easily. Second, I want you to see how the development can indeed be done from the top down as outlined
in the last installment. Finally, we both need the practice. Each time I go through this exercise, I get a little
better at it, and you will, also.

GETTING STARTED
Many years ago there were languages called Tiny BASIC, Tiny Pascal, and Tiny C, each of which was a
subset of its parent full language. Tiny BASIC, for example, had only single-character variable names and
global variables. It supported only a single data type. Sound familiar? At this point we have almost all the tools
we need to build a compiler like that.

Yet a language called Tiny-anything still carries some baggage inherited from its parent language. I've often
wondered if this is a good idea. Granted, a language based upon some parent language will have the
advantage of familiarity, but there may also be some peculiar syntax carried over from the parent that may
tend to add unnecessary complexity to the compiler. (Nowhere is this more true than in Small C.)

I've wondered just how small and simple a compiler could be made and still be useful, if it were designed from
the outset to be both easy to use and to parse. Let's find out. This language will just be called "TINY," period.
It's a subset of KISS, which I also haven't fully defined, so that at least makes us consistent (!). I suppose
you could call it TINY KISS. But that opens up a whole can of worms involving cuter and cuter (and perhaps
more risque) names, so let's just stick with TINY.

The main limitations of TINY will be because of the things we haven't yet covered, such as data types. Like
its cousins Tiny C and Tiny BASIC, TINY will have only one data type, the 16-bit integer. The first version
we develop will also have no procedure calls and will use single-character variable names, although as you
will see we can remove these restrictions without much effort.

The language I have in mind will share some of the good features of Pascal, C, and Ada. Taking a lesson
from the comparison of the Pascal and C compilers in the previous installment, though, TINY will have a
decided Pascal flavor. Wherever feasible, a language structure will be bracketed by keywords or symbols,
so that the parser will know where it's going without having to guess.

One other ground rule: As we go, I'd like to keep the compiler producing real, executable code. Even though it
may not DO much at the beginning, it will at least do it correctly.

Finally, I'll use a couple of Pascal restrictions that make sense: All data and procedures must be declared
before they are used. That makes good sense, even though for now the only data type we'll use is a word.
This rule in turn means that the only reasonable place to put the executable code for the main program is at the
end of the listing.

The top-level definition will be similar to Pascal:

 <program> ::= PROGRAM <top-level decl> <main> '.'

Already, we've reached a decision point. My first thought was to make the main block optional. It doesn't
seem to make sense to write a "program" with no main program, but it does make sense if we're allowing for
multiple modules, linked together. As a matter of fact, I intend to allow for this in KISS. But then we begin to
open up a can of worms that I'd rather leave closed for now. For example, the term "PROGRAM" really
becomes a misnomer. The MODULE of Modula-2 or the Unit of Turbo Pascal would be more appropriate.
Second, what about scope rules? We'd need a convention for dealing with name visibility across
modules. Better for now to just keep it simple and ignore the idea altogether.

There's also a decision in choosing to require the main program to be last. I toyed with the idea of making

its position optional, as in C. The nature of SK*DOS, the OS I'm compiling for, make this very easy to do.
But this doesn't really make much sense in view of the Pascal-like requirement that all data and procedures
be declared before they're referenced. Since the main program can only call procedures that have already
been declared, the only position that makes sense is at the end, a la Pascal.

**Begin with file: Cradle10.c
**Note: the following assembly code and header information can be assembled with the shareware, A86
Assembler to produce MS-DOS '.com' binary type executables.

Given the BNF above, let's write a parser that just recognizes the brackets:**

**Add to Prototypes:
 void Prog(void); void Header(void);
 void Prolog(); void Epilog(void);

void Prog() /* Parse and Translate A Program */
{
 Match('p');
 Header();
 Prolog();
 Match('.');
 Epilog();
}
/*-------------------------------*/

The procedure Header just emits the startup code required by the assembler:**

void Header() /* Write Header Info */
{
 printf(";\tTINY Compiler\n");
 EmitLn("jmp START");
}
/*-------------------------------*/

The procedures Prolog and Epilog emit the code for identifying the main program, and for returning to the
OS:**

void Prolog() /* Write the Prolog */
{
 printf("START\tPROC\tNEAR\n");
 PostLabel(";MAIN:..........................");
 printf("\n");
}
/*-------------------------------*/

void Epilog() /* Write the Epilog */
{
 PostLabel("\nEND");
 EmitLn("INT 20H");
 printf("START\tENDP\n");
}
/*-------------------------------*/

The main program just calls Prog, and then looks for a clean ending:**

void main() /* Main Program */
{
 Init();
 Prog();
 if(Look != '\n')
 { _Abort("Unexpected data after \'.\'\n");
 }
}
/*-------------------------------*/

At this point, TINY will accept only one input "program," the null program:

 PROGRAM . (or 'p.' in our shorthand.)

Note, though, that the compiler DOES generate correct code for this program. It will run, and do what you'd
expect the null program to do, that is, nothing but return gracefully to the OS.

As a matter of interest, one of my favorite compiler benchmarks is to compile, link, and execute the null
program in whatever language is involved. You can learn a lot about the implementation by measuring
the overhead in time required to compile what should be a trivial case. It's also interesting to measure the
amount of code produced. In many compilers, the code can be fairly large, because they always include the
whole run-time library whether they need it or not. Early versions of Turbo Pascal produced a 12K object file
for this case. VAX C generates 50K!

The smallest null programs I've seen are those produced by Modula-2 compilers, and they run about 200-
800 bytes.

In the case of TINY, we HAVE no run-time library as yet, so the object code is indeed tiny: two bytes. That's
got to be a record, and it's likely to remain one since it is the minimum size required by the OS.

The next step is to process the code for the main program. I'll use the Pascal BEGIN-block:

 <main> ::= BEGIN <block> END

Here, again, we have made a decision. We could have chosen to require a "PROCEDURE MAIN" sort of
declaration, similar to C. I must admit that this is not a bad idea at all ... I don't particularly like the
Pascal approach since I tend to have trouble locating the main program in a Pascal listing. But the
alternative is a little awkward, too, since you have to deal with the error condition where the user omits the
main program or misspells its name. Here I'm taking the easy way out.

Another solution to the "where is the main program" problem might be to require a name for the program, and
then bracket the main by

 BEGIN <name>
 END <name>

similar to the convention of Modula 2. This adds a bit of "syntactic sugar" to the language. Things like this
are easy to add or change to your liking, if the language is your own design.

To parse this definition of a main block, change procedure Prog to read:**

void Prog() /* Parse and Translate A Program */
{

 Match('p');
 Header();
 _Main();
 Match('.');
}
/*-------------------------------*/

and add the new procedure:**

**Add to Prototypes:
 void _Main(void);

void _Main() /* Parse and Translate a Main Program */
{
 Match('b');
 Prolog();
 Match('e');
 Epilog();
}
/*-------------------------------*/

Now, the only legal program is:

 PROGRAM BEGIN END . (or 'pbe.')

Aren't we making progress??? Well, as usual it gets better. You might try some deliberate errors here, like
omitting the 'b' or the 'e', and see what happens. As always, the compiler should flag all illegal inputs.

DECLARATIONS
The obvious next step is to decide what we mean by a declaration. My intent here is to have two kinds of
declarations: variables and procedures/functions. At the top level, only global declarations are allowed,
just as in C.

For now, there can only be variable declarations, identified by the keyword VAR (abbreviated 'v'):

 <top-level decls> (<data declaration>)*

 <data declaration> = VAR <var-list>

Note that since there is only one variable type, there is no need to declare the type. Later on, for full KISS, we
can easily add a type description.

The procedure Prog becomes:

void Prog() /* Parse and Translate A Program */
{
 Match('p');
 Header();
 TopDecls();
 _Main();
 Match('.');

}
/*-------------------------------*/

Now, add the two new procedures:**

**Add to Prototypes:
 void Decl(void);

void Decl() /* Process a Data Declaration */
{
 Match('v');
 _GetChar();
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{ char a_string[25];

 while(Look != 'b')
 { switch(Look)
 { case 'v':
 Decl();
 break;
 default:
 strcpy(a_string, "Unrecognized Keyword \' \'");
 a_string[22] = Look;
 _Abort(a_string);
 break;
 }
 }
}
/*-------------------------------*/

Note that at this point, Decl is just a stub. It generates no code, and it doesn't process a list ... every variable
must occur in a separate VAR statement.

OK, now we can have any number of data declarations, each starting with a 'v' for VAR, before the
BEGIN-block. Try a few cases and see what happens.

DECLARATIONS AND SYMBOLS
That looks pretty good, but we're still only generating the null program for output. A real compiler would
issue assembler directives to allocate storage for the variables. It's about time we actually produced some
code.

With a little extra code, that's an easy thing to do from procedure Decl. Modify it as follows:**

void Decl() /* Process a Data Declaration */
{ char Name;

 Match('v');
 Name = GetName();
 Alloc(Name);
}
/*-------------------------------*/

The procedure Alloc just issues a command to the assembler to allocate storage:**

**Add to Prototypes:
 void Alloc(char);

void Alloc(char N) /* Allocate Storage for a Variable */
{
 printf("%c\tDW 0\n", N);
}
/*-------------------------------*/

Give this one a whirl. Try an input that declares some variables, such as:

 pvxvyvzbe.

See how the storage is allocated? Simple, huh? Note also that the entry point, "MAIN," comes out in the right
place.

For the record, a "real" compiler would also have a symbol table to record the variables being used. Normally,
the symbol table is necessary to record the type of each variable. But since in this case all variables have
the same type, we don't need a symbol table for that reason. As it turns out, we're going to find a symbol
necessary even without different types, but let's postpone that need until it arises.

Of course, we haven't really parsed the correct syntax for a data declaration, since it involves a variable list.
Our version only permits a single variable. That's easy to fix, too.

The BNF for <var-list> is**

 <var-list> = <ident> (, <ident>)*

Adding this syntax to Decl gives this new version:**

void Decl() /* Process a Data Declaration */
{ char Name;

 Match('v');
 Name = GetName();
 Alloc(Name);
 while(Look == ',')
 { _GetChar();
 Fin();
 Name = GetName();
 Alloc(Name);
 }
}
/*-------------------------------*/

**and modify TopDecls to read:

void TopDecls() /* Parse and Translate Global Declarations */
{ char a_string[25];

 while(Look != 'b')
 { switch(Look)
 { case 'v':
 Decl();
 break;
 case '\n':
 Fin();
 break;
 default:
 strcpy(a_string, "Unrecognized Keyword \' \'");
 a_string[22] = Look;
 _Abort(a_string);
 break;
 }
 }
}
/*-------------------------------*/

OK, now compile this code and give it a try. Try a number of lines of VAR declarations, try a list of several
variables on one line, and try combinations of the two. Does it work?
**Try: pvx,y,zbe.

pvx, <cr> y,z,abe.
pvx, <cr> y,z,a <cr> be.

**Note: <cr> = [enter] key.
**For output to an assembly disk file, type: Cradle10 > x.asm
 and try any of the above examples.

INITIALIZERS
As long as we're dealing with data declarations, one thing that's always bothered me about Pascal is that it
doesn't allow initializing data items in the declaration. That feature is admittedly sort of a frill, and it may be
out of place in a language that purports to be a minimal language. But it's also SO easy to add that it seems
a shame not to do so. The BNF becomes:**

 <var-list> = <var> (<var>)*

 <var> = <ident> [= <integer>]

Change Alloc as follows:

void Alloc(char N) /* Allocate Storage for a Variable */
{ char Num;

 printf("%c\tDW ", N);
 if(Look == '=')
 { Match('=');
 Num = GetNum();
 printf("%c\n", Num);
 }
 else
 { printf("0\n");
 }
}
/*-------------------------------*/

There you are: an initializer with six added lines of **C.

OK, try this version of TINY and verify that you can, indeed, give the variables initial values.
**Try: pvx=1be.

pvx, <cr> y=1,zbe.
pvx, <cr> y=1,z=2 <cr> be.
pvx,y=1,z=2, <cr> abe.

By golly, this thing is starting to look real! Of course, it still doesn't DO anything, but it looks good, doesn't it?

Before leaving this section, I should point out that we've used two versions of function GetNum. One, the
earlier one, returns a character value, a single digit. The other accepts a multi-digit integer and returns an
integer value. Either one will work here, since **printf will handle either type. But there's no reason to limit
ourselves to single-digit values here, so the correct version to use is the one that returns an integer. Here it
is:**

**Change Prototype to:
 int GetNum(void);

int GetNum() /* Get a Number */
{ int Value;

 SkipWhite();
 Value = 0;
 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { Value = 10 * Value + Look - '0';
 _GetChar();
 }
 return Value;
}
/*-------------------------------*/

void Alloc(char N) /* Allocate Storage for a Variable */
{ int Num;

 printf("%c\tDW ", N);
 if(Look == '=')
 { Match('=');
 Num = GetNum();
 printf("%d\n", Num);
 }
 else
 { printf("0\n");
 }
}
/*-------------------------------*/

**Compile and try it using integer values.

As a matter of fact, strictly speaking we should allow for expressions in the data field of the initializer, or at
the very least for negative values. For now, let's just allow for negative values by changing the code for
Alloc as follows:**

void Alloc(char N) /* Allocate Storage for a Variable */
{ int Num;

 printf("%c\tDW ", N);
 if(Look == '=')
 { Match('=');
 if(Look == '-')
 { printf("%c", Look);
 Match('-');
 }
 Num = GetNum();
 printf("%d\n", Num);
 }
 else
 { printf("0\n");
 }
}
/*-------------------------------*/

Now you should be able to initialize variables with negative and/or multi-digit values.

THE SYMBOL TABLE
There's one problem with the compiler as it stands so far: it doesn't do anything to record a variable when we
declare it. So the compiler is perfectly content to allocate storage for several variables with the same name.
You can easily verify this with an input like

 pvavavabe.

Here we've declared the variable A three times. As you can see, the compiler will cheerfully accept that, and
generate three identical labels. Not good.

Later on, when we start referencing variables, the compiler will also let us reference variables that don't exist.
The assembler will catch both of these error conditions, but it doesn't seem friendly at all to pass such errors
along to the assembler. The compiler should catch such things at the source language level.

So even though we don't need a symbol table to record data types, we ought to install one just to check for
these two conditions. Since at this point we are still restricted to single-character variable names, the symbol
table can be trivial. To provide for it, first add the following declaration at the beginning of your program:**

**Add to Global Variables:
char ST[27];

and insert the following function:**

**Add to Prototypes:
 int InTable(char);

int InTable(char name) /* Look for Symbol in Table */
{ int ndx, rval=0;

 ndx = name - 'A';
 if(ST[ndx] != '\0')
 { rval = 1;
 }
 return rval;
}

/*-------------------------------*/

We also need to initialize the table to all blanks. The following lines in Init will do the job:**

void Init() /* Initialize */
{ int i;

 LCount = 0;
 _GetChar();
 SkipWhite();
 for(i=0; i<26; i++)
 { ST[i] = '\0';
 }
}
/*-------------------------------*/

Finally, insert the following ** lines at the beginning of Alloc:**

void Alloc(char N) /* Allocate Storage for a Variable */
{ int Num, ndx;
 char a_string[30];

 if(InTable(N))
 { strcpy(a_string, "Duplicate Variable Name \' \'");
 a_string[25] = N;
 _Abort(a_string);
 }
 ndx = N - 'A';
 ST[ndx] = 'v';
 printf("%c\tDW ", N);
 if(Look == '=')
 { Match('=');
 if(Look == '-')
 { printf("%c", Look);
 Match('-');
 }
 Num = GetNum();
 printf("%d\n", Num);
 }
 else
 { printf("0\n");
 }
}
/*-------------------------------*/

That should do it. The compiler will now catch duplicate declarations. Later, we can also use InTable
when generating references to the variables.

EXECUTABLE STATEMENTS
At this point, we can generate a null program that has some data variables declared and possibly initialized.
But so far we haven't arranged to generate the first line of executable code.

Believe it or not, though, we almost have a usable language! What's missing is the executable code that
must go into the main program. But that code is just assignment statements and control statements ... all stuff
we have done before. So it shouldn't take us long to provide for them, as well.

The BNF definition given earlier for the main program included a statement block, which we have so far
ignored:**

 <main> = BEGIN <block> END

For now, we can just consider a block to be a series of assignment statements:**

 <block> = (Assignment)*

Let's start things off by adding a parser for the block. We'll begin with a stub for the assignment statement:**

**Add to Prototypes:
 void Assignment(void); void Block(void);
 void Clear(void); void Negate(void);
 void LoadConst(int); void LoadVar(char);
 void Push(void); void PopAdd(void);
 void PopSub(void); void PopMul(void);
 void PopDiv(void); void Store(char);
 void Undefined(char); void StoreA(void);

void Assignment() /* Parse and Translate an Assignment Statement */
{
 _GetChar();
}
/*-------------------------------*/

void Block() /* Parse and Translate a Block of Statements */
{
 while(Look != 'e')
 { Assignment();
 Fin();
 }
}
/*-------------------------------*/

Modify procedure **_Main to call Block as shown below:**

void _Main() /* Parse and Translate a Main Program */
{
 Match('b');
 Prolog();
 Block();
 Match('e');
 Epilog();
}
/*-------------------------------*/

This version still won't generate any code for the "assignment statements" ... all it does is to eat characters
until it sees the 'e' for 'END.' But it sets the stage for what is to follow.

The next step, of course, is to flesh out the code for an assignment statement. This is something we've
done many times before, so I won't belabor it. This time, though, I'd like to deal with the code generation a
little differently. Up till now, we've always just inserted the Emits that generate output code in line with the
parsing routines. A little unstructured, perhaps, but it seemed the most straightforward approach, and made it
easy to see what kind of code would be emitted for each construct.

However, I realize that most of you are using an 80x86 computer, so the 68000 code generated is of little use
to you. Several of you have asked me if the CPU-dependent code couldn't be collected into one spot where it
would be easier to retarget to another CPU. The answer, of course, is yes.

To accomplish this, insert the following "code generation" routines:

void Clear() /* Clear the Primary Register */
{
 EmitLn("mov ax, 0");
}
/*-------------------------------*/

void Negate() /* Negate the Primary Register */
{
 EmitLn("neg ax");
}
/*-------------------------------*/

void LoadConst(int n) /* Load a Constant Value to Primary Register */
{
 Emit("mov ax, ");
 printf("%d\n", n);
}
/*-------------------------------*/

void LoadVar(char Name) /* Load a Variable to Primary Register */
{ char a_string[12];

 if(! InTable(Name))
 { Undefined(Name);
 }
 strcpy(a_string, "mov ax, ");
 a_string[9] = Name;
 EmitLn(a_string);
}
/*-------------------------------*/

void Push() /* Push Primary onto Stack */
{
 EmitLn("push ax");
}
/*-------------------------------*/

void PopAdd() /* Add Top of Stack to Primary */
{
 EmitLn("pop bx");
 EmitLn("add ax, bx");
}
/*-------------------------------*/

void PopSub() /* Subtract Primary from Top of Stack */
{

 EmitLn("pop bx");
 EmitLn("sub ax, bx");
 EmitLn("neg ax");
}
/*-------------------------------*/

void PopMul() /* Multiply Top of Stack by Primary */
{
 EmitLn("pop bx");
 EmitLn("mul bx");
}
/*-------------------------------*/

void PopDiv() /* Divide Top of Stack by Primary */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("div bx");
}
/*-------------------------------*/

void Store(char Nam) /* Store Primary to Variable */
{ char Name[2] = {0,0};

 Name[0] = Nam;
 if(! InTable(Nam))
 { Undefined(Nam);
 }
 strcpy(a_string, "lea di, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 EmitLn("mov [di], ax");
}
/*-------------------------------*/

The nice part of this approach, of course, is that we can retarget the compiler to a new CPU simply by
rewriting these "code generator" procedures. In addition, we will find later that we can improve the code
quality by tweaking these routines a bit, without having to modify the compiler proper.

Note that both LoadVar and Store check the symbol table to make sure that the variable is defined. The error
handler Undefined simply calls **_Abort:**

void Undefined(char N) /* Report an Undefined Identifier */
{ char a_string[25];

 strcpy(a_string, "Undefined Identifier ");
 a_string[21] = N;
 _Abort(a_string);
}
/*-------------------------------*/

OK, we are now finally ready to begin processing executable code. We'll do that by replacing the stub
version of procedure Assignment.

We've been down this road many times before, so this should all be familiar to you. In fact, except for the
changes associated with the code generation, we could just copy the procedures from Part VII. Since we are
making some changes, I won't just copy them, but we will go a little faster than usual.

The BNF for the assignment statement is:**

 <assignment> = <ident> = <expression>

 <expression> = <first term> (<addop> <term>)*

 <first term> = <first factor> <rest>

 <term> = <factor> <rest>

 <rest> = (<mulop> <factor>)*

 <first factor> = [<addop>] <factor>

 <factor> = <var> | <number> | (<expression>)

This version of the BNF is also a bit different than we've used before ... yet another "variation on the theme of
an expression." This particular version has what I consider to be the best treatment of the unary minus.
As you'll see later, it lets us handle negative constant values efficiently. It's worth mentioning here that
we have often seen the advantages of "tweaking" the BNF as we go, to help make the language easy to
parse. What you're looking at here is a bit different: we've tweaked the BNF to make the CODE
GENERATION more efficient!
That's a first for this series.

Anyhow, the following code implements the BNF:**

**Add to Prototypes:
 void Factor(void); void NegFactor(void);
 void FirstFactor(void); void Multiply(void);
 void Divide(void); void Term1(void);
 void Term(void); void FirstTerm(void);
 void Add(void); void Subtract(void);
 void Expression(void);

void Factor() /* Parse and Translate a Math Factor */
{ char Name;
 int Num;

 if(Look == '(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isalpha(Look))
 { Name = GetName();
 LoadVar(Name);
 }
 else
 { Num = GetNum();
 LoadConst(Num);
 }
}
/*-------------------------------*/

void NegFactor() /* Parse and Translate a Negative Factor */
{ int Num;

 Match('-');
 if(isdigit(Look))
 { Num = 0 - GetNum();
 LoadConst(Num);
 }
 else
 { Factor();
 Negate();
 }
}
/*-------------------------------*/

void FirstFactor() /* Parse and Translate a Leading Factor */
{
 switch(Look)
 { case '+':
 Match('+');
 Factor();
 break;
 case '-':
 NegFactor();
 break;
 default:
 Factor();
 break;
 }
}
/*-------------------------------*/

void Multiply() /* Recognize and Translate a Multiply */
{
 Match('*');
 Factor();
 PopMul();
}
/*-------------------------------*/

void Divide() /* Recognize and Translate a Divide */
{
 Match('/');
 Factor();
 PopDiv();
}
/*-------------------------------*/

void Term1() /* Common Code Used by Term and FirstTerm */
{
 while(IsMulop(Look))
 { Push();
 switch(Look)

 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void Term() /* Parse and Translate a Math Term */
{
 Factor();
 Term1();
}
/*-------------------------------*/

void FirstTerm() /* Parse and Translate a Leading Term */
{
 FirstFactor();
 Term1();
}
/*-------------------------------*/

void Add() /* Recognize and Translate an Add */
{
 Match('+');
 Term();
 PopAdd();
}
/*-------------------------------*/

void Subtract() /* Recognize and Translate a Subtract */
{
 Match('-');
 Term();
 PopSub();
}
/*-------------------------------*/

void Expression() /* Parse and Translate an Expression */
{
 FirstTerm();
 while(IsAddop(Look))
 { Push();
 switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();

 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{ char Name;

 Name = GetName();
 Match('=');
 Expression();
 Store(Name);
}
/*-------------------------------*/

OK, if you've got all this code inserted, then compile it and check it out. You should be seeing reasonable-
looking code, representing a complete program that will assemble and execute.**
**Try: pva=1ba=a+2e.

pva=10,b=2,cbc=a-be.
pva=10,b=2, <cr> cbc=a*be.
pva=10,b=2,c <cr> bc=a/be.
pva,b,c <cr> ba=10*2 <cr> b=a+1e.
pva,b,cba=10/2 <cr> b=a*3 <cr> c=b/ae.

We have a compiler!

**Try redirecting output to a source file: Cradle10 > x.asm

BOOLEANS
The next step should also be familiar to you. We must add Boolean expressions and relational operations.
Again, since we've already dealt with them more than once, I won't elaborate much on them, except where
they are different from what we've done before. Again, we won't just copy from other files because I've
changed a few things just a bit. Most of the changes just involve encapsulating the machine-dependent parts
as we did for the arithmetic operations. I've also modified procedure NotFactor somewhat, to parallel
the structure of FirstFactor. Finally, I corrected an error in the object code for the relational operators: The
Scc instruction I used only sets the low 8 bits of D0. We want all 16 bits set for a logical true, so I've added an
instruction to sign-extend the low byte.

To begin, we're going to need some more recognizers:**

**Add to Prototypes:
 int IsOrop(char); int IsRelop(char);
 void NotIt(void); void PopOr(void);
 void PopXor(void); void PopCompare(void);
 void SetEqual(void); void SetNEqual(void);
 void SetGreater(void); void SetLess(void);

void IsOrop(char ch) /* Recognize a Boolean Orop */
{ int rval=0;

 if((ch == '|') || (ch == '~'))

 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

int IsRelop(char ch) /* Recognize a Relop */
{ int rval=0;

 if(strchr("=#<>", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

Also, we're going to need some more code generation routines:**

void NotIt() /* Complement the Primary Register */
{
 EmitLn("not ax");
}
/*-------------------------------*/

void PopAnd() /* AND Top of Stack with Primary */
{
 EmitLn("pop bx");
 EmitLn("and ax, bx");
}
/*-------------------------------*/

void PopOr() /* OR Top of Stack with Primary */
{
 EmitLn("pop bx");
 EmitLn("or ax, bx");
}
/*-------------------------------*/

void PopXor() /* XOR Top of Stack with Primary */
{
 EmitLn("pop bx");
 EmitLn('xor ax, bx");
}
/*-------------------------------*/

void PopCompare() /* Compare Top of Stack with Primary */
{
 EmitLn("pop bx");
 EmitLn("cmp ax, bx");
}
/*-------------------------------*/

void SetEqual() /* Set AX If Compare was = */
{
 EmitLn("pushf");
 EmitLn("pop ax");
 EmitLn("and ax, 40H");
 EmitLn("ror ax, 6");
 EmitLn("neg ax");
}
/*-------------------------------*/

void SetNEqual() /* Set AX If Compare was != */
{
 EmitLn("pushf");
 EmitLn("pop ax");
 EmitLn("and ax, 40H");
 EmitLn("ror ax, 6");
 EmitLn("sub ax, 1");
}
/*-------------------------------*/

void SetGreater() /* Set AX If Compare was > */
{
 EmitLn("pushf");
 EmitLn("pop ax");
 EmitLn("and ax, 80H");
 EmitLn("ror ax, 7");
 EmitLn("neg ax");
}
/*-------------------------------*/

void SetLess() /* Set AX If Compare was < */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("cmp ax, bx");
 EmitLn("pushf");
 EmitLn("pop ax");
 EmitLn("and ax, 80H");
 EmitLn("ror ax, 7");
 EmitLn("neg ax");
}
/*-------------------------------*/

All of this gives us the tools we need. The BNF for the Boolean expressions is:**

 <bool-expr> = <bool-term> (<orop> <bool-term>)*

 <bool-term> = <not-factor> (<andop> <not-factor>)*

 <not-factor> = ['!'] <relation>

 <relation> = <expression> [<relop> <expression>]

Sharp-eyed readers might note that this syntax does not include the non-terminal "bool-factor" used in earlier
versions. It was needed then because I also allowed for the Boolean constants TRUE and FALSE. But
remember that in TINY there is no distinction made between Boolean and arithmetic types ... they can be
freely intermixed. So there is really no need for these predefined values ... we can just use -1 and 0,
respectively.

In C terminology, we could always use the defines:

 #define TRUE -1
 #define FALSE 0

(That is, if TINY had a preprocessor.) Later on, when we allow for declarations of constants, these two
values will be predefined by the language.

The reason that I'm harping on this is that I've already tried the alternative, which is to include TRUE and
FALSE as keywords. The problem with that approach is that it then requires lexical scanning for EVERY
variable name in every expression. If you'll recall, I pointed out in Installment VII that this slows the compiler
down considerably. As long as keywords can't be in expressions, we need to do the scanning only at the
beginning of every new statement ... quite an improvement. So using the syntax above not only simplifies
the parsing, but speeds up the scanning as well.

OK, given that we're all satisfied with the syntax above, the corresponding code is shown below:**
**Add to Prototypes:
 void Equals(void); void NotEquals(void);
 void Less(void); void Greater(void);
 void Relation(void); void NotFactor(void);
 void BoolTerm(void); void BoolOr(void);
 void BoolXor(void); void BoolExpression(void);

void Equals() /* Recognize and Translate a Relational "Equals" */
{
 Match('=');
 Expression();
 PopCompare();
 SetEqual();
}
/*-------------------------------*/

void NotEquals() /*Recognize and Translate a Relational "Not Equals"*/
{
 Match('#');
 Expression();
 PopCompare();
 SetNEqual();
}
/*-------------------------------*/

void Less() /* Recognize and Translate a Relational "Less Than" */
{
 Match('<');
 Expression();
 SetLess();
}
/*-------------------------------*/

void Greater() /*Recognize and Translate a Relational "Greater Than"*/
{
 Match('>');
 Expression();
 PopCompare();
 SetGreater();
}
/*-------------------------------*/

void Relation() /* Parse and Translate a Relation */
{
 Expression();
 if(IsRelop(Look))
 { Push();
 switch(Look)
 { case '=':
 Equals();
 break;
 case '#':
 NotEquals();
 break;
 case '<':
 Less();
 break;
 case '>':
 Greater();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void NotFactor() /* Parse and Translate Boolean Factor w/Leading NOT */
{
 if(Look == '!')
 { Match('!');
 Relation();
 NotIt();
 }
 else
 { Relation();
 }
}
/*-------------------------------*/

void BoolTerm() /* Parse and Translate a Boolean Term */
{
 NotFactor();
 while(Look == '&')
 { Push();
 Match('&');
 NotFactor();

 PopAnd();
 }
}
/*-------------------------------*/

void BoolOr() /* Recognize and Translate a Boolean OR */
{
 Match('|');
 BoolTerm();
 PopOr();
}
/*-------------------------------*/

void BoolXor() /* Recognize and Translate an Exclusive Or */
{
 Match('~');
 BoolTerm();
 PopXor();
}
/*-------------------------------*/

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
 BoolTerm();
 while(IsOrop(Look))
 { Push();
 switch(Look)
 { case '|':
 BoolOr();
 break;
 case '~':
 BoolXor();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

To tie it all together, don't forget to change the references to Expression in procedures Factor and
Assignment so that they call BoolExpression instead.**

OK, if you've got all that typed in, compile it and give it a whirl. First, make sure you can still parse an
ordinary arithmetic expression. Then, try a Boolean one. Finally, make sure that you can assign the results of
relations. Try, for example:

 pvx,y,zbx=z>ye.

which stands for:

 PROGRAM
 VAR X,Y,Z
 BEGIN
 X = Z > Y

 END.

See how this assigns a Boolean value to X?

CONTROL STRUCTURES
We're almost home. With Boolean expressions in place, it's a simple matter to add control structures. For
TINY, we'll only allow two kinds of them, the IF and the WHILE:**

 <if> = IF <bool-expression> <block> [ELSE <block>] ENDIF

 <while> = WHILE <bool-expression> <block> ENDWHILE

Once again, let me spell out the decisions implicit in this syntax, which departs strongly from that of C or
Pascal. In both of those languages, the "body" of an IF or WHILE is regarded as a single statement. If you
intend to use a block of more than one statement, you have to build a compound statement using BEGIN-END
(in Pascal) or '{}' (in C). In TINY (and KISS) there is no such thing as a compound statement ... single or
multiple they're all just blocks to these languages.

In KISS, all the control structures will have explicit and unique keywords bracketing the statement block, so
there can be no confusion as to where things begin and end. This is the modern approach, used in such
respected languages as Ada and Modula 2, and it completely eliminates the problem of the "dangling else."

Note that I could have chosen to use the same keyword END to end all the constructs, as is done in Pascal.
(The closing '}' in C serves the same purpose.) But this has always led to confusion, which is why Pascal
programmers tend to write things like

 end { loop }

or end { if }

As I explained in Part V, using unique terminal keywords does increase the size of the keyword list and
therefore slows down the scanning, but in this case it seems a small price to pay for the added insurance.
Better to find the errors at compile time rather than run time.

One last thought: The two constructs above each have the non-terminals

 <bool-expression> and <block>

juxtaposed with no separating keyword. In Pascal we would expect the keywords THEN and DO in these
locations.

I have no problem with leaving out these keywords, and the parser has no trouble either, ON CONDITION that
we make no errors in the bool-expression part. On the other hand, if we were to include these extra keywords
we would get yet one more level of insurance at very little cost, and I have no problem with that, either. Use
your best judgment as to which way to go.

OK, with that bit of explanation let's proceed. As usual, we're going to need some new code generation
routines. These generate the code for conditional and unconditional branches:**

**Add to Prototypes:
 void Branch(char *); void BranchFalse(char *);
 void DoIf(void); void DoWhile(void);

void Branch(char *Label) /* Branch Unconditional */
{ char a_string[20];

 strcpy(a_string, "jmp ");
 strcat(a_string, Label);
 EmitLn(a_string);
}
/*-------------------------------*/

void BranchFalse(char *Label) /* Branch False */
{ char a_string[20];

 EmitLn("test ah, 11111111b");
 strcpy(a_string, "jz ");
 strcat(a_string, Label);
 EmitLn(a_string);
}
/*-------------------------------*/

Except for the encapsulation of the code generation, the code to parse the control constructs is the same as
you've seen before:**

void DoIf() /* Recognize and Translate an IF Construct */
{ char L1[7], L2[7];

 Match('i');
 BoolExpression();
 strcpy(L1, NewLabel());
 strcpy(L2, L1);
 BranchFalse(L1);
 Block();
 if(Look == 'l')
 { Match('l');
 strcpy(L2, NewLabel());
 Branch(L2);
 PostLabel(L1);
 Block();
 }
 PostLabel(L2);
 Match('e');
}
/*-------------------------------*/

void DoWhile() /* Parse and Translate a WHILE Statement */
{ char L1[7], L2[7];

 Match('w');
 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 PostLabel(L1);
 BoolExpression();
 BranchFalse(L2);
 Block();
 Match('e');

 Branch(L1);
 PostLabel(L2);
}
/*-------------------------------*/

To tie everything together, we need only modify procedure Block to recognize the "keywords" for the IF and
WHILE. As usual, we expand the definition of a block like so:**

 <block> = (<statement>)*

where

 <statement> = <if> | <while> | <assignment>

The corresponding code is:

void Block() /* Parse and Translate a Block of Statements */
{
 while(! strchr("el", Look))
 { switch(Look)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 default:
 Assignment();
 Fin();
 break;
 }
 Fin();
 }
}
/*-------------------------------*/

OK, add the routines I've given, compile and test them. You should be able to parse the single-character
versions of any of the control constructs. It's looking pretty good!
**Try: pvxbix=0x=1lx=2ee.

pvx,y,zbx=z=y <cr> ix=0x=1lx=2ee.
pvx,y,zbx=z=y <cr> ix=0x=1lx=2e <cr> iz>0z=z-1ee.

**example 3 translates to:

Program:
Vars: X,Y,Z
Begin:

X = Z = Y
<enter>
IF X = 0

X = 1
ELSE X = 2
ENDIF
<enter>
IF Z > 0

Z = Z-1
ENDIF

END.

**Again, try sending the output to a source file: Cradle10 > x.asm

As a matter of fact, except for the single-character limitation we've got a virtually complete version of TINY. I
call it, with tongue planted firmly in cheek, TINY Version 0.1.

LEXICAL SCANNING
Of course, you know what's next: We have to convert the program so that it can deal with multi-character
keywords, newlines, and whitespace. We have just gone through all that in Part VII. We'll use the distributed
scanner technique that I showed you in that installment. The actual implementation is a little different
because the way I'm handling newlines is different.

To begin with, let's simply allow for whitespace. This involves only adding calls to SkipWhite at the end of the
three routines, GetName, GetNum, and Match. A call to SkipWhite in Init primes the pump in case there are
leading spaces. **See below:

Next, we need to deal with newlines. This is really a two-step process, since the treatment of the newlines
with single-character tokens is different from that for multi-character ones. We can eliminate some work by
doing both steps at once, but I feel safer taking things one step at a time.

Insert the new procedure:**

**Add to Prototypes:
 void NewLine(void);

void NewLine() /* Skip Over an End-of-Line */
{
 while(strchr("\n\r", Look))
 { _GetChar();
 if(Look == '\n')
 { _GetChar();
 }
 SkipWhite();
 }
}
/*-------------------------------*/

Note that we have seen this procedure before in the form of Procedure Fin. I've changed the name since
this new one seems more descriptive of the actual function. I've also changed the code to allow for
multiple newlines and lines with nothing but white space.

The next step is to insert calls to NewLine wherever we decide a newline is permissible. As I've pointed out
before, this can be very different in different languages. In TINY, I've decided to allow them virtually anywhere.
This means that we need calls to NewLine at the BEGINNING (not the end, as with SkipWhite) of the
procedures GetName, GetNum, and Match.

int GetNum()
{ int Value;

 NewLine(); <----
 SkipWhite(); <----
 Value = 0;
 ...
 [snip]...

char GetName()
{ char Name;

 NewLine(); <-----
 SkipWhite(); <-----
 if(! isalpha(Look))
 ...
 [snip]...
 ...
 SkipWhite(); <-----
 return Name;
}
/*-------------------------------*/

void Match(char x)
{ char string[6];

 NewLine(); <-----
 if(Look != x)
 { strcpy(string, "\" \"");
 ...
 [snip]...
/*-------------------------------*/

For procedures that have while loops, such as TopDecl, we need a call to NewLine at the beginning of the
procedure AND at the bottom of each loop. That way, we can be assured that NewLine has just been
called at the beginning of each pass through the loop.**

void TopDecls()
{ char a_string[25];

 NewLine(); <-----
 while(Look != 'b')
 ...
 [snip]...
 break;
 }
 NewLine(); <-----
 }
}
/*-------------------------------*/

void Block()
{
 while(! strchr("el", Look))
 { NewLine(); <-----
 ...
 [snip]...
 break;
 }
 NewLine(); <-----
 SkipWhite(); <-----
 }
}
/*-------------------------------*/

If you've got all this done, try the program out and verify that it will indeed handle white space and newlines.
**Try: pvx,y,zb <cr> ix=0 x=1e <cr> x=y=z <cr> iz>0 z=z-1 lx=2ee.

If it does, then we're ready to deal with multi-character tokens and keywords. To begin, add the additional
declarations (copied almost verbatim from Part VII):**

/* - Constants - */
#define BEEP 7
#define NKW 9
#define NKW1 10

/* - Global Variables - */
 char Look; /* look ahead character */
 int LCount;
 char Token; /* Current Token */
 char Value[20]; /* String Token of Look */
 char ST[26];

/* Define Keywords and Token Types */
 static char *KWlist[] = { "IF","ELSE","ENDIF", "WHILE",
 "ENDWHILE", "VAR", "BEGIN", "END", "PROGRAM" };

 static char KWcode[NKW1] =
 { 'x','i','l','e','w','e','v','b','e','p' };

Next, add the three procedures, also from Part VII:**

**Add to Prototypes:
 int Lookup(char *,int); void Scan(void);
 void MatchString(char *);

int Lookup(char *s, int n) /* Table Lookup */
{ int i, found=0;

 i = n;
 while((i >= 0) && (found == 0))
 { if(strcmp(s, KWlist[i]) == 0)
 { found = 1;
 }
 else
 { i--;
 }
 }
 i++;
 return i; /* If the input string matches a table entry,

 return the entry index. If not, return a zero.*/
}
/*-------------------------------*/

void Scan() /* Get an Identifier and Scan it for Keywords */
{ int k;

 GetName();
 k = Lookup(Value, NKW);

 Token = KWcode[k];
}
/*-------------------------------*/

void MatchString(char *string) /* Match a Specific Input String */
{ char a_string[20];

 if(strcmp(Value, string) != 0)
 { strcpy(a_string, "\"");
 strcat(a_string, string);
 strcat(a_string, "\"");
 Expected(a_string);
 }
}
/*-------------------------------*/

Now, we have to make a fairly large number of subtle changes to the remaining procedures. First, we must
change the function GetName ** again as we did in Part VII:**

**Change Prototypes to:
void GetName()

void GetName() /* Get an Identifier */
{ int ndx=0;

 NewLine();
 SkipWhite();
 if(! isalpha(Look))
 { Expected("Name");
 }
 Value[0] = '\0';
 while((isalnum(Look)) && (ndx < 18))
 { Value[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 SkipWhite();
}
/*-------------------------------*/

Note that this procedure leaves its result in the global string Value.

Next, we have to change every reference to GetName to reflect its new form. These occur in Factor,
Assignment, and Decl:

void Factor() /* Parse and Translate a Math Factor */
{ char Name;
 int Num;

 if(Look == '(')
 { Match('(');
 BoolExpression();
 Match(')');
 }

 else if(isalpha(Look))
 { GetName();
 LoadVar(Value[0]);
 }
 else
 { Num = GetNum();
 LoadConst(Num);
 }
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{ char Name;

 Name = Value[0];
 Match('=');
 BoolExpression();
 Store(Name);
}
/*-------------------------------*/

void Decl() /* Process a Data Declaration */
{
 GetName();
 Alloc(Value[0]);
 while(Look == ',')
 { Match(',');
 GetName();
 Alloc(Value[0]);
 }
}
/*-------------------------------*/

(Note that we're still only allowing single-character variable names, so we take the easy way out here and
simply use the first character of the string.)

Finally, we must make the changes to use Token instead of Look as the test character and to call Scan at
the appropriate places. Mostly, this involves deleting calls to Match, occasionally replacing calls to Match
by calls to MatchString, and replacing calls to NewLine by calls to Scan. Here are the affected
routines:**

void DoIf() /* Recognize and Translate an IF Construct */
{ char L1[7], L2[7];

 BoolExpression();
 strcpy(L1, NewLabel());
 strcpy(L2, L1);
 BranchFalse(L1);
 Block();
 if(Token == 'l')
 { strcpy(L2, NewLabel());
 Branch(L2);
 PostLabel(L1);
 Block();
 }
 PostLabel(L2);

 MatchString("ENDIF");
}
/*-------------------------------*/

void DoWhile() /* Parse and Translate a WHILE Statement */
{ char L1[7], L2[7];

 strcpy(L1, NewLabel());
 strcpy(L2, NewLabel());
 PostLabel(L1);
 BoolExpression();
 BranchFalse(L2);
 Block();
 MatchString("ENDWHILE");
 Branch(L1);
 PostLabel(L2);
}
/*-------------------------------*/

void Block() /* Parse and Translate a Block of Statements */
{
 Scan();
 while(! strchr("el", Token))
 { switch(Token)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 default:
 Assignment();
 Fin();
 break;
 }
 Scan();
 }
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{ char a_string[25];

 Scan();
 while(Token != 'b')
 { switch(Token)
 { case 'v':
 Decl();
 break;
 case '\n':
 Fin();
 break;
 default:
 strcpy(a_string, "Unrecognized Keyword ");
 strcat(a_string, Value);
 _Abort(a_string);

 break;
 }
 Scan();
 }
}
/*-------------------------------*/

void _Main() /* Parse and Translate a Main Program */
{
 MatchString("BEGIN");
 Prolog();
 Block();
 MatchString("END");
 Epilog();
}
/*-------------------------------*/

void Prog() /* Parse and Translate A Program */
{
 MatchString("PROGRAM");
 Header();
 TopDecls();
 _Main();
 Match('.');
}
/*-------------------------------*/

void Init() /* Initialize */
{ int i;

 LCount = 0;
 for(i=0; i<26; i++)
 { ST[i] = '\0';
 }
 _GetChar();
 Scan();
}
/*-------------------------------*/

That should do it. If all the changes got in correctly, you should now be parsing programs that look like
programs. (If you didn't make it through all the changes, don't despair. A complete listing of the final form
is given later.)
**Try: program var a begin end.

program var x,y,z begin <cr>
if x#0 y=1 else z=2 endif end.

program var x=1, y=2, z=3 begin <cr>
while x<100 <cr> x=z*(y-1) <cr>
endwhile end.

Did it work? If so, then we're just about home. In fact, with a few minor exceptions we've already got a
compiler that's usable. There are still a few areas that need improvement.

MULTI-CHARACTER VARIABLE NAMES
One of those is the restriction that we still have, requiring single-character variable names. Now that we can
handle multi-character keywords, this one begins to look very much like an arbitrary and unnecessary
limitation. And indeed it is. Basically, its only virtue is that it permits a trivially simple implementation of the
symbol table. But that's just a convenience to the compiler writers, and needs to be eliminated.

We've done this step before. This time, as usual, I'm doing it a little differently. I think the approach used here
keeps things just about as simple as possible.

The natural way to implement a symbol table in Pascal is by declaring a record type, and making the symbol
table an array of such records. Here, though, we don't really need a type field yet (there is only one kind of
entry allowed so far), so we only need an array of symbols. This has the advantage that we can use the existing
procedure Lookup to search the symbol table as well as the keyword list. As it turns out, even when we need
more fields we can still use the same approach, simply by storing the other fields in separate arrays.

OK, here are the changes that need to be made. First, add the new typed constant:**

#define MaxEntry 100
 int NEntry = 0;

Then change the definition of the symbol table as follows:

 char ST[MaxEntry][10];
 char SType[MaxEntry];

(Note that ST is _NOT_ declared as a SymTab. That declaration is a phony one to get Lookup to work. A
SymTab would take up too much RAM space, and so one is never actually allocated.)

Next, we need to replace InTable:**

int InTable() /* Look for Symbol in Table */
{ int rval=0;

 if(Lookup('S', MaxEntry) != 0)
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

We also need a new procedure, AddEntry, that adds a new entry to the table:

**Add to Prototypes:
 void AddEntry(char); void StoreA(void);

void AddEntry(char T) /* Add a New Entry to Symbol Table */
{ char a_string[20];

 if(InTable())
 { strcpy(a_string, "Duplicate Identifier ");
 strcat(a_string, Value);
 _Abort(a_string);
 }
 if(NEntry == MaxEntry)

 { _Abort("Symbol Table Full");
 }
 strcpy(ST[NEntry], Value);
 SType[NEntry] = T;
 NEntry++;
}
/*-------------------------------*/

This procedure is called by Alloc:**

void Alloc() /* Allocate Storage for a Variable */
{ int Num;
 char a_string[30];

 if(InTable())
 { strcpy(a_string, "Duplicate Variable Name ");
 strcat(a_string, Value);
 _Abort(a_string);
 }
 AddEntry('v');
 printf("%s\tDW ", Value);
 if(Look == '=')
 { Match('=');
 if(Look == '-')
 { printf("%c", Look);
 Match('-');
 }
 Num = GetNum();
 printf("%d\n", Num);
 }
 else
 { printf("0\n");
 }
}
/*-------------------------------*/

Finally, we must change all the routines that currently treat the variable name as a single character. These
include LoadVar and Store (just change the type from char to string), and Factor, Assignment, and Decl (just
change Value[1] to Value).**
**Change the Prototypes to match the following functions:

void Scan() /* Get an Identifier and Scan it for Keywords */
{ int k;

 GetName();
 k = Lookup('K', NKW);
 Token = KWcode[k];
}
/*-------------------------------*/

int Lookup(char List, int Num) /* Table Lookup */
{ int i, found=0;

 i = Num;
 if(List == 'K')
 { while((i >= 0) && (found == 0))

 { if(strcmp(Value, KWlist[i]) == 0)
 { found = 1;
 }
 else
 { i--;
 }
 }
 }
 else
 { while((i >= 0) && (found == 0))
 { if(strcmp(Value, ST[i]) == 0)
 { found = 1;
 }
 else
 { i--;
 }
 }
 }
 i++;
 return i; /* If the input string matches a table entry,

 return the entry index. If not, return a zero.*/
}
/*-------------------------------*/

void Factor() /* Parse and Translate a Math Factor */
{ int Num;

 if(Look == '(')
 { Match('(');
 BoolExpression();
 Match(')');
 }
 else if(isalpha(Look))
 { GetName();
 LoadVar();
 }
 else
 { Num = GetNum();
 LoadConst(Num);
 }
}
/*-------------------------------*/

void Undefined() /* Report an Undefined Identifier */
{ char a_string[35];

 strcpy(a_string, "Undefined Identifier ");
 strcat(a_string, Value);
 _Abort(a_string);
}
/*-------------------------------*/

void StoreA() /* Load Address of Primary Variable */
{ char a_string[25];

 if(! InTable())
 { Undefined();
 }

 strcpy(a_string, "lea di, ");
 strcat(a_string, Value);
 EmitLn(a_string);
}
/*-------------------------------*/

void Store() /* Store Primary to Variable */
{ char a_string[25];

 if(! InTable())
 { Undefined();
 }
 EmitLn("mov [di], ax");
}
/*-------------------------------*/

void LoadVar() /* Load a Variable to Primary Register */
{ char a_string[20];

 if(! InTable())
 { Undefined();
 }
 strcpy(a_string, "mov ax, ");
 strcat(a_string, Value);
 EmitLn(a_string);
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{
 Match('=');
 StoreA();
 BoolExpression();
 Store();
}
/*-------------------------------*/

int InTable() /* Look for Symbol in Table */
{ int rval=0;

 if(Lookup('S', MaxEntry) != 0)
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

void Alloc() /* Allocate Storage for a Variable */
{ int Num;
 char a_string[30];

 if(InTable())
 { strcpy(a_string, "Duplicate Variable Name ");
 strcat(a_string, Value);
 _Abort(a_string);
 }
 AddEntry('v');
 printf("%s\tDW ", Value);

 if(Look == '=')
 { Match('=');
 if(Look == '-')
 { printf("%c", Look);
 Match('-');
 }
 Num = GetNum();
 printf("%d\n", Num);
 }
 else
 { printf("0\n");
 }
}
/*-------------------------------*/

void Decl() /* Process a Data Declaration */
{
 GetName();
 Alloc();
 while(Look == ',')
 { Match(',');
 GetName();
 Alloc();
 }
}
/*-------------------------------*/

One last thing: change procedure Init to clear the array as shown:

void Init() /* Initialize */
{ int i;

 LCount = 0;
 for(i=0; i<MaxEntry; i++)
 { ST[i][0] = '\0';
 SType[i] = '\0';
 }
 _GetChar();
 Scan();
}
/*-------------------------------*/

That should do it. Try it out and verify that you can, indeed, use multi-character variable names.

MORE RELOPS
We still have one remaining single-character restriction: the one on relops. Some of the relops are indeed single
characters, but others require two. These are '<=' and '>='. I also prefer the Pascal '<>' for "not equals,"
instead of '#'.

If you'll recall, in Part VII I pointed out that the conventional way to deal with relops is to include them in the
list of keywords, and let the lexical scanner find them. But, again, this requires scanning throughout the
expression parsing process, whereas so far we've been able to limit the use of the scanner to the beginning of a
statement.

I mentioned then that we can still get away with this, since the multi-character relops are so few and so limited
in their usage. It's easy to just treat them as special cases and handle them in an ad hoc manner.

The changes required affect only the code generation routines and procedures Relation and friends. First,
we're going to need two more code generation routines:**

**Add to Prototypes:
 void SetLessOrEqual(void); void SetGreaterOrEqual(void);
 void LessOrEqual(void);

void SetLessOrEqual() /* Set AX If Compare was <= */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("cmp ax, bx");
 EmitLn("pushf");
 EmitLn("pop ax");
 EmitLn("mov ah, 0");
 EmitLn("and al, 0C3H");
 EmitLn("sub al, 2");
 EmitLn("neg ax");
 EmitLn("mov al, ah");
}
/*-------------------------------*/

void SetGreaterOrEqual() /* Set AX If Compare was >= */
{
 EmitLn("pushf");
 EmitLn("pop ax");
 EmitLn("mov ah, 0");
 EmitLn("and al, 0C3H");
 EmitLn("sub al, 2");
 EmitLn("neg ax");
 EmitLn("mov al, ah");
}
/*-------------------------------*/

void LessOrEqual() /*Recognize and Translate a Relational */
{ /* "Less Than or Equal"*/
 Match('=');
 Expression();
 SetLessOrEqual();
}
/*-------------------------------*/

Then, modify the relation parsing routines as shown below:**

void NotEquals() /*Recognize and Translate a Relational "Not Equals"*/
{
 Match('>');
 Expression();
 PopCompare();
 SetNEqual();
}

/*-------------------------------*/

void Less() /* Recognize and Translate a Relational "Less Than" */
{
 Match('<');
 switch(Look)
 { case '=':
 LessOrEqual();
 break;
 case '>':
 NotEquals();
 break;
 default:
 Expression();
 SetLess();
 break;
 }
}
/*-------------------------------*/

void Greater() /*Recognize and Translate a Relational "Greater Than"*/
{
 Match('>');
 if(Look == '=')
 { Match('=');
 Expression();
 PopCompare();
 SetGreaterOrEqual();
 }
 else
 { Expression();
 PopCompare();
 SetGreater();
 }
}
/*-------------------------------*/

void Relation() /* Parse and Translate a Relation */
{
 Expression();
 if(IsRelop(Look))
 { Push();
 switch(Look)
 { case '=':
 Equals();
 break;
 case '<':
 Less();
 break;
 case '>':
 Greater();
 break;
 default:
 break;
 }
 }

}
/*-------------------------------*/

That's all it takes. Now you can process all the relops. Try it.

INPUT/OUTPUT
We now have a complete, working language, except for one minor embarassment: we have no way to get
data in or out. We need some I/O.

Now, the convention these days, established in C and continued in Ada and Modula 2, is to leave I/O statements
out of the language itself, and just include them in the subroutine library. That would be fine, except that so
far we have no provision for subroutines. Anyhow, with this approach you run into the problem of variable-
length argument lists. In Pascal, the I/O statements are built into the language because they are the only ones
for which the argument list can have a variable number of entries. In C, we settle for kludges like scanf and
printf, and must pass the argument count to the called procedure. In Ada and Modula 2 we must use the
awkward (and SLOW!) approach of a separate call for each argument.

So I think I prefer the Pascal approach of building the I/O in, even though we don't need to.

As usual, for this we need some more code generation routines. These turn out to be the easiest of all,
because all we do is to call library procedures to do the work:**

**Add to Prototypes:
 void ReadVar(void); void WriteVar(void);
 void DoRead(void); void DoWrite(void);

void ReadVar() /* Read Variable to Primary Register */
{
 EmitLn("call READ");
 Store();
}
/*-------------------------------*/

void WriteVar() /* Write Variable from Primary Register */
{
 EmitLn("call WRITE");
}
/*-------------------------------*/

The idea is that READ loads the value from input to the D0, and WRITE outputs it from there.

These two procedures represent our first encounter with a need for library procedures ... the components of a
Run Time Library (RTL). Of course, someone (namely us) has to write these routines, but they're not part
of the compiler itself. I won't even bother showing the routines here, since these are obviously very much OS-
dependent. I _WILL_ simply say that for SK*DOS, they are particularly simple ... almost trivial. One reason
I won't show them here is that you can add all kinds of fanciness to the things, for example by prompting in
READ for the inputs, and by giving the user a chance to reenter a bad input.

But that is really separate from compiler design, so for now I'll just assume that a library call TINYLIB.LIB exists.
Since we now need it loaded, we need to add a statement to include it in procedure Header:**[snip]
That takes care of that part. Now, we also need to recognize the read and write commands. We can do this
by adding two more keywords to our list:**

/* Definition of Keywords and Token Types */

#define NKW 11
#define NKW1 12

 static char *KWlist[] = { "IF","ELSE","ENDIF", "WHILE", "ENDWHILE",
 "READ", "WRITE", "VAR", "BEGIN", "END", "PROGRAM" };

 static char KWcode[NKW1] = { 'x','i','l','e','w',
'e','R','W','v','b','e','p' };

(Note how I'm using upper case codes here to avoid conflict with the 'w' of WHILE.)

Next, we need procedures for processing the read/write statement and its argument list:

void DoRead() /* Process a Read Statement */
{
 Match('(');
 GetName();
 ReadVar();
 while(Look == ',')
 { Match(',');
 GetName();
 ReadVar();
 }
 Match(')');
}
/*-------------------------------*/

void DoWrite() /* Process a Write Statement */
{
 Match('(');
 Expression();
 WriteVar();
 while(Look == ',')
 { Match(',');
 Expression();
 WriteVar();
 }
 Match(')');
}
/*-------------------------------*/

Finally, we must expand procedure Block to handle the new statement types:

void Block() /* Parse and Translate a Block of Statements */
{
 Scan();
 while(! strchr("el", Token))
 { switch(Token)
 { case 'i':
 DoIf();
 break;

 case 'w':
 DoWhile();
 break;
 case 'R':
 DoRead();
 break;
 case 'W':
 DoWrite();
 break;
 default:
 Assignment();
 Fin();
 break;
 }
 Scan();
 }
}
/*-------------------------------*/

**Try: program var x,y,z begin <cr> read(x,y,z) end.
program var x,y,z begin <cr> write(x,y,z end.

That's all there is to it. _NOW_ we have a language!

CONCLUSION
At this point we have TINY completely defined. It's not much ... actually a toy compiler. TINY has only one
data type and no subroutines ... but it's a complete, usable language. While you're not likely to be able to
write another compiler in it, or do anything else very seriously, you could write programs to read some input,
perform calculations, and output the results. Not too bad for a toy.

Most importantly, we have a firm base upon which to build further extensions. I know you'll be glad to hear this:
this is the last time I'll start over in building a parser ... from now on I intend to just add features to TINY
until it becomes KISS. Oh, there'll be other times we will need to try things out with new copies of the
Cradle, but once we've found out how to do those things they'll be incorporated into TINY.

What will those features be? Well, for starters we need subroutines and functions. Then we need to be
able to handle different types, including arrays, strings, and other structures. Then we need to deal with the idea
of pointers. All this will be upcoming in future installments.

See you then.

For references purposes, the complete listing of TINY Version 1.0 is shown below:**

**See file: Tiny_v01.c

INTRODUCTION
I've got some good news and some bad news. The bad news is that this installment is not the one I
promised last time. What's more, the one after this one won't be, either.

The good news is the reason for this installment: I've found a way to simplify and improve the lexical
scanning part of the compiler. Let me explain.

BACKGROUND
If you'll remember, we talked at length about the subject of lexical scanners in Part VII, and I left you with a

design for a distributed scanner that I felt was about as simple as I could make it ... more than most that I've
seen elsewhere. We used that idea in Part X. The compiler structure that resulted was simple, and it got
the job done.

Recently, though, I've begun to have problems, and they're the kind that send a message that you might be
doing something wrong.

The whole thing came to a head when I tried to address the issue of semicolons. Several people have asked
me about them, and whether or not KISS will have them separating the statements. My intention has been
NOT to use semicolons, simply because I don't like them and, as you can see, they have not proved necessary.

But I know that many of you, like me, have gotten used to them, and so I set out to write a short installment
to show you how they could easily be added, if you were so inclined.

Well, it turned out that they weren't easy to add at all. In fact it was darned difficult.

I guess I should have realized that something was wrong, because of the issue of newlines. In the last
couple of installments we've addressed that issue, and I've shown you how to deal with newlines with a
procedure called, appropriately enough, NewLine. In TINY Version 1.0, I sprinkled calls to this procedure in
strategic spots in the code.

It seems that every time I've addressed the issue of newlines, though, I've found it to be tricky, and the
resulting parser turned out to be quite fragile ... one addition or deletion here or there and things tended to go
to pot. Looking back on it, I realize that there was a message in this that I just wasn't paying attention to.

When I tried to add semicolons on top of the newlines, that was the last straw. I ended up with much too
complex a solution. I began to realize that something fundamental had to change.

So, in a way this installment will cause us to backtrack a bit and revisit the issue of scanning all over again.
Sorry about that. That's the price you pay for watching me do this in real time. But the new version is
definitely an improvement, and will serve us well for what is to come.

As I said, the scanner we used in Part X was about as simple as one can get. But anything can be improved.
The new scanner is more like the classical scanner, and not as simple as before. But the overall compiler
structure is even simpler than before. It's also more robust, and easier to add to and/or modify. I think that's
worth the time spent in this digression. So in this installment, I'll be showing you the new structure. No doubt
you'll be happy to know that, while the changes affect many procedures, they aren't very profound and so
we lose very little of what's been done so far.

Ironically, the new scanner is much more conventional than the old one, and is very much like the more
generic scanner I showed you earlier in Part VII. Then I started trying to get clever, and I almost clevered
myself clean out of business. You'd think one day I'd learn: K-I-S-S!

THE PROBLEM
The problem begins to show itself in procedure Block, which I've reproduced below:**

void Block() /* Parse and Translate a Block of Statements */
{
 Scan();
 while(! strchr("el", Token))
 { switch(Token)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 case 'R':

 DoRead();
 break;
 case 'W':
 DoWrite();
 break;
 default:
 Assignment();
 Fin();
 break;
 }
 Scan();
 }
}
/*-------------------------------*/

As you can see, Block is oriented to individual program statements. At each pass through the loop, we
know that we are at the beginning of a statement. We exit the block when we have scanned an END or an
ELSE.

But suppose that we see a semicolon instead. The procedure as it's shown above can't handle that,
because procedure Scan only expects and can only accept tokens that begin with a letter.

I tinkered around for quite awhile to come up with a fix. I found many possible approaches, but none were
very satisfying. I finally figured out the reason.

Recall that when we started with our single-character parsers, we adopted a convention that the lookahead
character would always be prefetched. That is, we would have the character that corresponds to our
current position in the input stream fetched into the global character Look, so that we could examine it as
many times as needed. The rule we adopted was that EVERY recognizer, if it found its target token, would
advance Look to the next character in the input stream.

That simple and fixed convention served us very well when we had single-character tokens, and it still does. It
would make a lot of sense to apply the same rule to multi-character tokens.

But when we got into lexical scanning, I began to violate that simple rule. The scanner of Part X did indeed
advance to the next token if it found an identifier or keyword, but it DIDN'T do that if it found a carriage return, a
whitespace character, or an operator.

Now, that sort of mixed-mode operation gets us into deep trouble in procedure Block, because whether or not
the input stream has been advanced depends upon the kind of token we encounter. If it's a keyword or the
target of an assignment statement, the "cursor," as defined by the contents of Look, has been advanced to
the next token OR to the beginning of whitespace. If, on the other hand, the token is a semicolon, or if we
have hit a carriage return, the cursor has NOT advanced.

Needless to say, we can add enough logic to keep us on track. But it's tricky, and makes the whole parser
very fragile.

There's a much better way, and that's just to adopt that same rule that's worked so well before, to apply to
TOKENS as well as single characters. In other words, we'll prefetch tokens just as we've always done for
characters. It seems so obvious once you think about it that way.

Interestingly enough, if we do things this way the problem that we've had with newline characters goes away.
We can just lump them in as whitespace characters, which means that the handling of newlines becomes
very trivial, and MUCH less prone to error than we've had to deal with in the past.

**Begin with file: Cradle11.c

**Note: the assembly code produced by Tiny can be assembled with the shareware A86 Assembler to produce

MS-DOS '.com' binary type executables.

THE SOLUTION
Let's begin to fix the problem by re-introducing the two procedures:**

void GetName() /* Get an Identifier */
{ int ndx=0;

 SkipWhite();
 if(! isalpha(Look))
 { Expected("Identifier");
 }
 Token = 'x';
 Value[0] = '\0';
 while((isalnum(Look)) && (ndx < 18))
 { Value[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
}
/*-------------------------------*/

void GetNum() /* Get a Number */
{ int ndx=0;

 SkipWhite();
 if(! isdigit(Look))
 { Expected("Number");
 }
 Token = '#';
 Value[0] = '\0';
 while(isdigit(Look))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
}
/*-------------------------------*/

These two procedures are functionally almost identical to the ones I showed you in Part VII. They each
fetch the current token, either an identifier or a number, into the global string Value. They also set the
encoded version, Token, to the appropriate code. The input stream is left with Look containing the first
character NOT part of the token.

We can do the same thing for operators, even multi-character operators, with a procedure such as:**
**Add to Prototypes:
 void GetOp(void); void Next(void);

void GetOp() /* Get an Operator */
{ int ndx=0;

 Token = Look;

 Value[0] = '\0';
 while((isalpha(Look)==0)&&(isdigit(Look)==0)&&(IsWhite(Look)==0))
 { Value[ndx] = Look;
 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
}
/*-------------------------------*/

Note that GetOp returns, as its encoded token, the FIRST character of the operator. This is important,
because it means that we can now use that single character to drive the parser, instead of the lookahead
character.

We need to tie these procedures together into a single procedure that can handle all three cases. The
following procedure will read any one of the token types and always leave the input stream advanced beyond
it:**

void Next() /* Get the Next Input Token */
{
 SkipWhite();
 if(isalpha(Look))
 { GetName();
 }
 else if(isdigit(Look))
 { GetNum();
 }
 else
 { GetOp();
 }
}
/*-------------------------------*/

***NOTE that here I have put SkipWhite BEFORE the calls rather than after. This means that, in general, the
variable Look will NOT have a meaningful value in it, and therefore we should NOT use it as a test value for
parsing, as we have been doing so far. That's the big departure from our normal approach.

Now, remember that before I was careful not to treat the carriage return (CR) and line feed (LF) characters as
white space. This was because, with SkipWhite called as the last thing in the scanner, the encounter with
LF would trigger a read statement. If we were on the last line of the program, we couldn't get out until we
input another line with a non-white character. That's why I needed the second procedure, NewLine, to handle
the CRLF's.

But now, with the call to SkipWhite coming first, that's exactly the behavior we want. The compiler must
know there's another token coming or it wouldn't be calling Next. In other words, it hasn't found the terminating
END yet. So we're going to insist on more data until we find something.

All this means that we can greatly simplify both the program and the concepts, by treating CR and LF as
whitespace characters, and eliminating NewLine. You can do that simply by modifying the function IsWhite:**

int IsWhite(char ch)
{ int test=0;

 if(strchr(" \t\n\r", ch))
 { test = 1;
 }
 return test;

}
/*-------------------------------*/

We've already tried similar routines in Part VII, but you might as well try these new ones out. Add them to a
copy of the Cradle and call Next with the following main program:**

void main() /* Main Program */
{
 Init();
 while(Token != '.')
 { Next();
 printf("%c %s\n", Token, Value);
 }
}
/*-------------------------------*/

Compile it and verify that you can separate a program into a series of tokens, and that you get the right
encoding for each token.
**Example, try: program var x=10,y=20,z=30 begin end.

This ALMOST works, but not quite. There are two potential problems: First, in KISS/TINY almost all of
our operators are single-character operators. The only exceptions are the relops >=, <=, and <>. It seems a
shame to treat all operators as strings and do a string compare, when only a single character compare will
almost always suffice. Second, and much more important, the thing doesn't WORK when two operators
appear together, as in (a+b)*(c+d). Here the string following 'b' would be interpreted as a single operator ")*(."

It's possible to fix that problem. For example, we could just give GetOp a list of legal characters, and we
could treat the parentheses as different operator types than the others. But this begins to get messy.

Fortunately, there's a better way that solves all the problems. Since almost all the operators are single
characters, let's just treat them that way, and let GetOp get only one character at a time. This not only
simplifies GetOp, but also speeds things up quite a bit. We still have the problem of the relops, but we were
treating them as special cases anyway.

So here's the final version of GetOp:**

void GetOp() /* Get an Operator */
{
 SkipWhite();
 Token = Look;
 Value[0] = Look;
 Value[1] = '\0';
 _GetChar();
}
/*-------------------------------*/

Note that I still give the string Value a value. If you're truly concerned about efficiency, you could leave this out.
When we're expecting an operator, we will only be testing Token anyhow, so the value of the string won't
matter. But to me it seems to be good practice to give the thing a value just in case.

Try this new version with some realistic-looking code. You should be able to separate any program into
its individual tokens, with the caveat that the two-character relops will scan into two separate tokens. That's
OK ... we'll parse them that way.

Now, in Part VII the function of Next was combined with procedure Scan, which also checked every identifier
against a list of keywords and encoded each one that was found. As I mentioned at the time, the last thing
we would want to do is to use such a procedure in places where keywords should not appear, such as in
expressions. If we did that, the keyword list would be scanned for every identifier appearing in the code. Not
good.

The right way to deal with that is to simply separate the functions of fetching tokens and looking for
keywords. The version of Scan shown below does NOTHING but check for keywords. Notice that it operates
on the current token and does NOT advance the input stream.**

void Scan() /* Scan the Current Identifier for Keywords */
{ int k;

 if(Token == 'x')
 { k = Lookup('K', NKW);
 Token = KWcode[k];
 }
}
/*-------------------------------*/

There is one last detail. In the compiler there are a few places that we must actually check the string value
of the token. Mainly, this is done to distinguish between the different END's, but there are a couple of other
places. (I should note in passing that we could always eliminate the need for matching END characters by
encoding each one to a different character. Right now we are definitely taking the lazy man's route.)

The following version of MatchString takes the place of the character-oriented Match. Note that, like Match,
it DOES advance the input stream.**

void MatchString(char *string) /* Match a Specific Input String */
{ char a_string[20];

 if(strcmp(Value, string) != 0)
 { strcpy(a_string, "\"");
 strcat(a_string, string);
 strcat(a_string, "\"");
 Expected(a_string);
 }
 Next();
}
/*-------------------------------*/

FIXING UP THE COMPILER
Armed with these new scanner procedures, we can now begin to fix the compiler to use them properly. The
changes are all quite minor, but there are quite a few places where changes are necessary. Rather than
showing you each place, I will give you the general idea and then just give the finished product.

First of all, the code for procedure Block doesn't change, though its function does:**

void Block() /* Parse and Translate a Block of Statements */
{
 Scan();
 while(! strchr("el", Token))
 { switch(Token)
 { case 'i':
 DoIf();

 break;
 case 'w':
 DoWhile();
 break;
 case 'R':
 DoRead();
 break;
 case 'W':
 DoWrite();
 break;
 default:
 Assignment();
 break;
 }
 Scan();
 }
}
/*-------------------------------*/

Remember that the new version of Scan doesn't advance the input stream, it only scans for keywords. The
input stream must be advanced by each procedure that Block calls.

In general, we have to replace every test on Look with a similar test on Token. For example:**

void BoolExpression() /* Parse and Translate a Boolean Expression */
{
 BoolTerm();
 while(IsOrop(Token))
 { Push();
 switch(Look)
 { case '|':
 BoolOr();
 break;
 case '~':
 BoolXor();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

In procedures like Add, we don't have to use Match anymore. We need only call Next to advance the input
stream:**

void Add() /* Recognize and Translate an Add */
{
 Next();
 Term();
 PopAdd();
}
/*-------------------------------*/

Control structures are actually simpler. We just call Next to advance over the control keywords:**

void DoIf() /* Recognize and Translate an IF Construct */
{ char L1[7], L2[7];

 Next();
 BoolExpression();
 strcpy(L1, NewLabel());
 strcpy(L2, L1);
 BranchFalse(L1);
 Block();
 if(Token == 'l')
 { Next();
 strcpy(L2, NewLabel());
 Branch(L2);
 PostLabel(L1);
 Block();
 }
 PostLabel(L2);
 MatchString("ENDIF");
}
/*-------------------------------*/

That's about the extent of the REQUIRED changes. In the listing of TINY Version 1.1 below, I've also made
a number of other "improvements" that aren't really required. Let me explain them briefly:

 (1) I've deleted the two procedures Prog and _Main, and combined their functions into the main
 program. They didn't seem to add to program clarity ... in fact they seemed to just muddy
 things up a little.

 (2) I've deleted the keywords PROGRAM and BEGIN from the keyword list. Each one only
 occurs in one place, so it's not necessary to search for it.

 (3) Having been bitten by an overdose of cleverness, I've reminded myself that TINY is
 supposed to be a minimalist program. Therefore I've replaced the fancy handling of unary
 minus with the dumbest one I could think of. A giant step backwards in code quality, but a
 great simplification of the compiler. KISS is the right place to use the other version.

 (4) I've added some error-checking routines such as CheckTable and CheckDup, and replaced
 in-line code by calls to them. This cleans up a number of routines.

 (5) I've taken the error checking out of code generation routines like Store, and put it in the
 parser where it belongs. See Assignment, for example.

 (6) There was an error in InTable and Locate that caused them to search all locations instead of
 only those with valid data in them. They now search only valid cells. This allows us to
 eliminate the initialization of the symbol table, which was done in Init.

 (7) Procedure AddEntry now has two arguments, which helps to make things a bit more
 modular.

 (8) I've cleaned up the code for the relational operators by the addition of the new procedures
 CompareExpression and NextExpression.

 (9) I fixed an error in the Read routine ... the earlier value did not check for a valid variable name.

CONCLUSION
The resulting compiler for TINY is given below. Other than the removal of the keyword PROGRAM, it parses
the same language as before. It's just a bit cleaner, and more importantly it's considerably more robust. I

feel good about it.

The next installment will be another digression: the discussion of semicolons and such that got me into this
mess in the first place. THEN we'll press on into procedures and types. Hang in there with me. The addition
of those features will go a long way towards removing KISS from the "toy language" category. We're getting
very close to being able to write a serious compiler.**

TINY VERSION 1.1

/*--
program Tiny11;
--*/

**See file: Tiny_v1.1.c

INTRODUCTION
This installment is another one of those excursions into side alleys that don't seem to fit into the
mainstream of this tutorial series. As I mentioned last time, it was while I was writing this installment that I
realized some changes had to be made to the compiler structure. So I had to digress from this digression
long enough to develop the new structure and show it to you.

Now that that's behind us, I can tell you what I set out to in the first place. This shouldn't take long, and then
we can get back into the mainstream.

Several people have asked me about things that other languages provide, but so far I haven't addressed in
this series. The two biggies are semicolons and comments. Perhaps you've wondered about them, too, and
wondered how things would change if we had to deal with them. Just so you can proceed with what's to come,
without being bothered by that nagging feeling that something is missing, we'll address such issues here.

SEMICOLONS
Ever since the introduction of Algol, semicolons have been a part of almost every modern language. We've all
used them to the point that they are taken for granted. Yet I suspect that more compilation errors have
occurred due to misplaced or missing semicolons than any other single cause. And if we had a penny for
every extra keystroke programmers have used to type the little rascals, we could pay off the national debt.

Having been brought up with FORTRAN, it took me a long time to get used to using semicolons, and to tell the
truth I've never quite understood why they were necessary. Since I program in Pascal, and since the use of
semicolons in Pascal is particularly tricky, that one little character is still by far my biggest source of errors.

When I began developing KISS, I resolved to question EVERY construct in other languages, and to try to
avoid the most common problems that occur with them. That puts the semicolon very high on my hit list.

To understand the role of the semicolon, you have to look at a little history.

Early programming languages were line-oriented. In FORTRAN, for example, various parts of the statement
had specific columns or fields that they had to appear in. Since some statements were too long for one line,
the "continuation card" mechanism was provided to let the compiler know that a given card was still part of
the previous line. The mechanism survives to this day, even though punched cards are now things of the
distant past.

When other languages came along, they also adopted various mechanisms for dealing with multiple-line
statements. BASIC is a good example. It's important to recognize, though, that the FORTRAN mechanism
was not so much required by the line orientation of that language, as by the column-orientation. In those
versions of FORTRAN where free-form input is permitted, it's no longer needed.

When the fathers of Algol introduced that language, they wanted to get away from line-oriented programs like

FORTRAN and BASIC, and allow for free-form input. This included the possibility of stringing multiple
statements on a single line, as in

 a=b; c=d; e=e+1;

In cases like this, the semicolon is almost REQUIRED. The same line, without the semicolons, just looks
"funny":

 a=b c= d e=e+1

I suspect that this is the major ... perhaps ONLY ... reason for semicolons: to keep programs from looking
funny.

But the idea of stringing multiple statements together on a single line is a dubious one at best. It's not
very good programming style, and harks back to the days when it was considered important to conserve
cards. In these days of CRT's and indented code, the clarity of programs is far better served by keeping
statements separate. It's still nice to have the OPTION of multiple statements, but it seems a shame to
keep programmers in slavery to the semicolon, just to keep that one rare case from "looking funny."

When I started in with KISS, I tried to keep an open mind. I decided that I would use semicolons when it
became necessary for the parser, but not until then. I figured this would happen just about the time I added the
ability to spread statements over multiple lines. But, as you can see, that never happened. The TINY
compiler is perfectly happy to parse the most complicated statement, spread over any number of lines, without
semicolons.

Still, there are people who have used semicolons for so long, they feel naked without them. I'm one of them.
Once I had KISS defined sufficiently well, I began to write a few sample programs in the language. I
discovered, somewhat to my horror, that I kept putting semicolons in anyway. So now I'm facing the
prospect of a NEW rash of compiler errors, caused by UNWANTED semicolons. Phooey!

Perhaps more to the point, there are readers out there who are designing their own languages, which may
include semicolons, or who want to use the techniques of these tutorials to compile conventional languages
like C. In either case, we need to be able to deal with semicolons.

SYNTACTIC SUGAR
This whole discussion brings up the issue of "syntactic sugar" ... constructs that are added to a language, not
because they are needed, but because they help make the programs look right to the programmer. After all,
it's nice to have a small, simple compiler, but it would be of little use if the resulting language were
cryptic and hard to program. The language FORTH comes to mind (a premature OUCH! for the barrage I
know that one's going to fetch me). If we can add features to the language that make the programs easier to
read and understand, and if those features help keep the programmer from making errors, then we should do
so. Particularly if the constructs don't add much to the complexity of the language or its compiler.

The semicolon could be considered an example, but there are plenty of others, such as the 'THEN' in a IF-
statement, the 'DO' in a WHILE-statement, and even the 'PROGRAM' statement, which I came within a gnat's
eyelash of leaving out of TINY. None of these tokens add much to the syntax of the language ... the
compiler can figure out what's going on without them. But some folks feel that they DO add to the readability
of programs, and that can be very important.

There are two schools of thought on this subject, which are well represented by two of our most popular
languages, C and Pascal.

To the minimalists, all such sugar should be left out. They argue that it clutters up the language and adds to
the number of keystrokes programmers must type. Perhaps more importantly, every extra token or keyword
represents a trap laying in wait for the inattentive programmer. If you leave out a token, misplace it, or misspell

it, the compiler will get you. So these people argue that the best approach is to get rid of such things. These
folks tend to like C, which has a minimum of unnecessary keywords and punctuation.

Those from the other school tend to like Pascal. They argue that having to type a few extra characters is a
small price to pay for legibility. After all, humans have to read the programs, too. Their best argument is that
each such construct is an opportunity to tell the compiler that you really mean for it to do what you said to. The
sugary tokens serve as useful landmarks to help you find your way.

The differences are well represented by the two languages. The most oft-heard complaint about C is that it
is too forgiving. When you make a mistake in C, the erroneous code is too often another legal C construct.
So the compiler just happily continues to compile, and leaves you to find the error during debug. I guess
that's why debuggers are so popular with C programmers.

On the other hand, if a Pascal program compiles, you can be pretty sure that the program will do what you
told it. If there is an error at run time, it's probably a design error.

The best example of useful sugar is the semicolon itself. Consider the code fragment:

 a=1+(2*b+c) b...

Since there is no operator connecting the token 'b' with the rest of the statement, the compiler will conclude that
the expression ends with the ')', and the 'b' is the beginning of a new statement. But suppose I have
simply left out the intended operator, and I really want to say:

 a=1+(2*b+c)*b...

In this case the compiler will get an error, all right, but it won't be very meaningful since it will be expecting an
'=' sign after the 'b' that really shouldn't be there.

If, on the other hand, I include a semicolon after the 'b', THEN there can be no doubt where I intend the
statement to end. Syntactic sugar, then, can serve a very useful purpose by providing some additional
insurance that we remain on track.

I find myself somewhere in the middle of all this. I tend to favor the Pascal-ers' view ... I'd much rather find
my bugs at compile time rather than run time. But I also hate to just throw verbosity in for no apparent
reason, as in COBOL. So far I've consistently left most of the Pascal sugar out of KISS/TINY. But I certainly
have no strong feelings either way, and I also can see the value of sprinkling a little sugar around just for the
extra insurance that it brings. If you like this latter approach, things like that are easy to add. Just
remember that, like the semicolon, each item of sugar is something that can potentially cause a compile error
by its omission.

DEALING WITH SEMICOLONS
There are two distinct ways in which semicolons are used in popular languages. In Pascal, the semicolon
is regarded as an statement SEPARATOR. No semicolon is required after the last statement in a block. The
syntax is:

 <block> ::= <statement> (';' <statement>)*

 <statement> ::= <assignment> | <if> | <while> ... | null

(The null statement is IMPORTANT!)

Pascal also defines some semicolons in other places, such as after the PROGRAM statement.

In C and Ada, on the other hand, the semicolon is considered a statement TERMINATOR, and follows all
statements (with some embarrassing and confusing exceptions). The syntax for this is simply:

 <block> ::= (<statement> ';')*

Of the two syntaxes, the Pascal one seems on the face of it more rational, but experience has shown that it
leads to some strange difficulties. People get so used to typing a semicolon after every statement that they
tend to type one after the last statement in a block, also. That usually doesn't cause any harm ... it just
gets treated as a null statement. Many Pascal programmers, including yours truly, do just that. But there is
one place you absolutely CANNOT type a semicolon, and that's right before an ELSE. This little gotcha has
cost me many an extra compilation, particularly when the ELSE is added to existing code. So the
C/Ada choice turns out to be better. Apparently Nicklaus Wirth thinks so, too: In his Modula 2, he abandoned
the Pascal approach.

Given either of these two syntaxes, it's an easy matter (now that we've reorganized the parser!) to add these
features to our parser. Let's take the last case first, since it's simpler.

To begin, I've made things easy by introducing a new recognizer:**

**Begin with file: Cradle12.c

**Add to Prototypes:
 void Semi(void);

void Semi() /* Match a Semicolon */
{
 MatchString(";");
}
/*-------------------------------*/

This procedure works very much like our old Match. It insists on finding a semicolon as the next token. Having
found it, it skips to the next one.

Since a semicolon follows a statement, procedure Block is almost the only one we need to change:**

void Block() /* Parse and Translate a Block of Statements */
{
 Scan();
 while(! strchr("el", Token))
 { switch(Token)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 case 'R':
 DoRead();
 break;
 case 'W':
 DoWrite();
 break;
 case 'x':

 Assignment();
 break;
 default:
 break;
 }
 Semi();
 Scan();
 }
}
/*-------------------------------*/

Note carefully the subtle change in the case statement. The call to Assignment is now guarded by a test on
Token. This is to avoid calling Assignment when the token is a semicolon (which could happen if the
statement is null).

Since declarations are also statements, we also need to add a call to Semi within procedure TopDecls:**

void TopDecls() /* Parse and Translate Global Declarations */
{
 Scan();
 while(Token == 'v')
 { Alloc();
 while(Token == ',')
 { Alloc();
 }
 Semi();
 }
}
/*-------------------------------*/

Finally, we need one for the PROGRAM statement:**

void main() /* Main Program */
{
 Init();
 MatchString("PROGRAM");
 Semi();
 Header();
 TopDecls();
 MatchString("BEGIN");
 Prolog();
 Block();
 MatchString("END");
 Epilog();
}
/*-------------------------------*/

It's as easy as that. Try it with a copy of TINY and see how you like it.

**Compile and try: program; var x,y,z; begin x=y+z; end.

The Pascal version is a little trickier, but it still only requires minor changes, and those only to procedure
Block. To keep things as simple as possible, let's split the procedure into two parts. The following procedure
handles just one statement:**

**Add to Prototypes:
 void Statement(void);

void Statement() /* Parse and Translate a Single Statement */
{
 Scan();
 switch(Token)
 { case 'i':
 DoIf();
 break;
 case 'w':
 DoWhile();
 break;
 case 'R':
 DoRead();
 break;
 case 'W':
 DoWrite();
 break;
 case 'x':
 Assignment();
 break;
 default:
 break;
 }
}
/*-------------------------------*/

Using this procedure, we can now rewrite Block like this:**

void Block() /* Parse and Translate a Block of Statements */
{
 Statement();
 while(Token == ';')
 { Next();
 Statement();
 }
}
/*-------------------------------*/

That sure didn't hurt, did it? We can now parse semicolons in Pascal-like fashion.

**Try: program; var x,y,z; begin <cr>
if x=y x=z; else z=x; endif <cr>
end.

A COMPROMISE
Now that we know how to deal with semicolons, does that mean that I'm going to put them in KISS/TINY? Well,
yes and no. I like the extra sugar and the security that comes with knowing for sure where the ends of
statements are. But I haven't changed my dislike for the compilation errors associated with semicolons.

So I have what I think is a nice compromise: Make them OPTIONAL!

Consider the following version of Semi:**

void Semi() /* Match a Semicolon */
{
 if(Token == ';')
 { Next();
 }
}
/*-------------------------------*/

This procedure will ACCEPT a semicolon whenever it is called, but it won't INSIST on one. That means that
when you choose to use semicolons, the compiler will use the extra information to help keep itself on track.
But if you omit one (or omit them all) the compiler won't complain. The best of both worlds.

Put this procedure in place in the first version of your program (the one for C/Ada syntax), and you have the
makings of TINY Version 1.2.

COMMENTS
Up until now I have carefully avoided the subject of comments. You would think that this would be an easy
subject ... after all, the compiler doesn't have to deal with comments at all; it should just ignore them. Well,
sometimes that's true.

Comments can be just about as easy or as difficult as you choose to make them. At one extreme, we can
arrange things so that comments are intercepted almost the instant they enter the compiler. At the other,
we can treat them as lexical elements. Things tend to get interesting when you consider things like comment
delimiters contained in quoted strings.

SINGLE-CHARACTER DELIMITERS
Here's an example. Suppose we assume the Turbo Pascal standard and use curly braces for comments. In
this case we have single-character delimiters, so our parsing is a little easier.

One approach is to strip the comments out the instant we encounter them in the input stream; that is,
right in procedure **_GetChar. To do this, first change the name of **_GetChar to something else, say
_GetCharX. (For the record, this is going to be a TEMPORARY change, so best not do this with your only copy
of TINY. I assume you understand that you should always do these experiments with a working copy.)**

**Add to Prototypes:
 void _GetCharX(void); void SkipComment(void);

void _GetCharX() /* Read New Character From Input Stream */
{
 Look = getchar();
}
/*-------------------------------*/

Now, we're going to need a procedure to skip over comments. So key in the following one:**

void SkipComment() /* Skip A Comment Field */
{
 while(Look != '}')
 { _GetCharX();
 }
 _GetCharX();
}
/*-------------------------------*/

Clearly, what this procedure is going to do is to simply read and discard characters from the input stream, until
it finds a right curly brace. Then it reads one more character and returns it in Look.

Now we can write a new version of **_GetChar that SkipComment to strip out comments:**

void _GetChar() /* Get Character from Input Stream */
{ /* Skip Any Comments */
 _GetCharX();
 if(Look == '{')
 { SkipComment();
 }
}
/*-------------------------------*/

Code this up and give it a try. You'll find that you can, indeed, bury comments anywhere you like. The
comments never even get into the parser proper ... every call to _GetChar just returns any character that's NOT
part of a comment.

As a matter of fact, while this approach gets the job done, and may even be perfectly satisfactory for you, it
does its job a little TOO well. First of all, most programming languages specify that a comment should be
treated like a space, so that comments aren't allowed to be embedded in, say, variable names. This current
version doesn't care WHERE you put comments.

Second, since the rest of the parser can't even receive a '{' character, you will not be allowed to put one in a
quoted string.

Before you turn up your nose at this simplistic solution, though, I should point out that as respected a compiler
as Turbo Pascal also won't allow a '{' in a quoted string. Try it. And as for embedding a comment in an
identifier, I can't imagine why anyone would want to do such a thing, anyway, so the question is moot. For 99%
of all applications, what I've just shown you will work just fine.

But, if you want to be picky about it and stick to the conventional treatment, then we need to move the
interception point downstream a little further.

To do this, first change _GetChar back to the way it was and change the name called in SkipComment. **

void _GetChar() /* Read New Character From Input Stream */
{
 Look = getchar();
}
/*-------------------------------*/

void SkipComment() /* Skip A Comment Field */
{
 while(Look != '}')
 { _GetChar();
 }
 _GetChar();
}
/*-------------------------------*/

Then, let's add the left brace as a possible whitespace character:**

int IsWhite(char ch)

{ int test=0;

 if(strchr(" \t\n\r{", ch))
 { test = 1;
 }
 return test;
}
/*-------------------------------*/

Now, we can deal with comments in procedure SkipWhite:**

void SkipWhite() /* Skip Over Leading White Space */
{
 while(IsWhite(Look))
 { if(Look == '{')
 { SkipComment();
 }
 else
 { _GetChar();
 }
 }
}
/*-------------------------------*/

Note that SkipWhite is written so that we will skip over any combination of whitespace characters and
comments, in one call.

OK, give this one a try, too. You'll find that it will let a comment serve to delimit tokens. It's worth mentioning
that this approach also gives us the ability to handle curly braces within quoted strings, since within such
strings we will not be testing for or skipping over whitespace.

There's one last item to deal with: Nested comments. Some programmers like the idea of nesting
comments, since it allows you to comment out code during debugging. The code I've given here won't allow
that and, again, neither will Turbo Pascal.

But the fix is incredibly easy. All we need to do is to make SkipComment recursive:**

void SkipComment() /* Skip A Comment Field */
{
 while(Look != '}')
 { _GetChar();
 if(Look == '{')
 { SkipComment();
 }
 }
 _GetChar();
}
/*-------------------------------*/

That does it. As sophisticated a comment-handler as you'll ever need.

MULTI-CHARACTER DELIMITERS
That's all well and good for cases where a comment is delimited by single characters, but what about the
cases such as C or standard Pascal, where two characters are required? Well, the principles are still the

same, but we have to change our approach quite a bit. I'm sure it won't surprise you to learn that things get
harder in this case.

For the multi-character situation, the easiest thing to do is to intercept the left delimiter back at the _GetChar
stage. We can "tokenize" it right there, replacing it by a single character.

Let's assume we're using the C delimiters '/*' and '*/'. First, we need to go back to the "_GetCharX' approach.
In yet another copy of your compiler, rename _GetChar to _GetCharX and then enter the following new
procedure _GetChar:**

void _GetChar() /* Read New Character. Intercept '/*' */
{
 if(TempChar != ' ')
 { Look = TempChar;
 TempChar = ' ';
 }
 else
 { _GetCharX();
 if(Look == '/')
 { TempChar = getchar();
 if(TempChar == '*')
 { Look = '{';
 TempChar = ' ';
 }
 }
 }
}
/*-------------------------------*/

As you can see, what this procedure does is to intercept every occurrence of '/'. It then examines the NEXT
character in the stream. If the character is a '*', then we have found the beginning of a comment, and
_GetChar will return a single character replacement for it. (For simplicity, I'm using the same '{' character
as I did for Pascal. If you were writing a C compiler, you'd no doubt want to pick some other character that's not
used elsewhere in C. Pick anything you like ... even $FF, anything that's unique.)

If the character following the '/' is NOT a '*', then _GetChar tucks it away in the new global TempChar, and
returns the '/'.

Note that you need to declare this new variable and initialize it to ' '. **

/* - Global Variables - */
 char TempChar = ' ';

Now we need a new version of SkipComment:**

void SkipComment() /* Skip A Comment Field */
{
 while(Look != '/')
 { while(Look != '*')
 { _GetCharX();
 }
 _GetCharX();
 }
 _GetChar();
}
/*-------------------------------*/

A few things to note: first of all, function IsWhite and procedure SkipWhite don't need to be changed,
since _GetChar returns the '{' token. If you change that token character, then of course you also need to
change the character in those two routines.

Second, note that SkipComment doesn't call _GetChar in its loop, but _GetCharX. That means that the
trailing '/' is not intercepted and is seen by SkipComment. Third, although _GetChar is the procedure doing
the work, we can still deal with the comment characters embedded in a quoted string, by calling
_GetCharX instead of _GetChar while we're within the string. Finally, note that we can again provide for
nested comments by adding a single statement to SkipComment, just as we did before.

ONE-SIDED COMMENTS
So far I've shown you how to deal with any kind of comment delimited on the left and the right. That only
leaves the one-sided comments like those in assembler language or in Ada, that are terminated by the end of
the line. In a way, that case is easier. The only procedure that would need to be changed is
SkipComment, which must now terminate at the newline characters:**

void SkipComment() /* Skip A Comment Field */
{
 while(Look != '\n')
 { _GetCharX();
 }
 _GetChar();
}
/*-------------------------------*/

If the leading character is a single one, as in the ';' of assembly language, then we're essentially done. If
it's a two-character token, as in the '--' of Ada, we need only modify the tests within GetChar. Either way, it's
an easier problem than the balanced case.

CONCLUSION
At this point we now have the ability to deal with both comments and semicolons, as well as other kinds of
syntactic sugar. I've shown you several ways to deal with each, depending upon the convention desired.
The only issue left is: which of these conventions should we use in KISS/TINY?

For the reasons that I've given as we went along, I'm choosing the following:

 (1) Semicolons are TERMINATORS, not separators

 (2) Semicolons are OPTIONAL

 (3) Comments are delimited by curly braces

 (4) Comments MAY be nested

Put the code corresponding to these cases into your copy of TINY. You now have TINY Version 1.2.

Now that we have disposed of these sideline issues, we can finally get back
into the mainstream. In the next installment, we'll talk about procedures and
parameter passing, and we'll add these important features to TINY. See you then.

INTRODUCTION
At last we get to the good part!

At this point we've studied almost all the basic features of compilers and parsing. We have learned how
to translate arithmetic expressions, Boolean expressions, control constructs, data declarations, and I/O
statements. We have defined a language, TINY 1.3, that embodies all these features, and we have written a
rudimentary compiler that can translate them. By adding some file I/O we could indeed have a working
compiler that could produce executable object files from programs written in TINY. With such a compiler, we
could write simple programs that could read integer data, perform calculations with it, and output the results.

That's nice, but what we have is still only a toy language. We can't read or write even a single character of
text, and we still don't have procedures.

It's the features to be discussed in the next couple of installments that separate the men from the toys,
so to speak. "Real" languages have more than one data type, and they support procedure calls. More than
any others, it's these two features that give a language much of its character and personality. Once we have
provided for them, our languages, TINY and its successors, will cease to become toys and will take
on the character of real languages, suitable for serious programming jobs.

For several installments now, I've been promising you sessions on these two important subjects. Each time,
other issues came up that required me to digress and deal with them. Finally, we've been able to put all those
issues to rest and can get on with the mainstream of things. In this installment, I'll cover procedures.
Next time, we'll talk about the basic data types.

ONE LAST DIGRESSION
This has been an extraordinarily difficult installment for me to write. The reason has nothing to do with the
subject itself ... I've known what I wanted to say for some time, and in fact I presented most of this at
Software Development '89, back in February. It has more to do with the approach. Let me explain.

When I first began this series, I told you that we would use several "tricks" to make things easy, and to let
us learn the concepts without getting too bogged down in the details. Among these tricks was the idea of
looking at individual pieces of a compiler at a time, i.e. performing experiments using the Cradle as a base.
When we studied expressions, for example, we dealt with only that part of compiler theory. When we studied
control structures, we wrote a different program, still based on the Cradle, to do that part. We only
incorporated these concepts into a complete language fairly recently. These techniques have served us very
well indeed, and led us to the development of a compiler for TINY version 1.3.

When I first began this session, I tried to build upon what we had already done, and just add the new
features to the existing compiler. That turned out to be a little awkward and tricky ... much too much to suit me.

I finally figured out why. In this series of experiments, I had abandoned the very useful techniques that had
allowed us to get here, and without meaning to I had switched over into a new method of working, that
involved incremental changes to the full TINY compiler.

You need to understand that what we are doing here is a little unique. There have been a number of articles,
such as the Small C articles by Cain and Hendrix, that presented finished compilers for one language or
another. This is different. In this series of tutorials, you are watching me design and implement both a
language and a compiler, in real time.

In the experiments that I've been doing in preparation for this article, I was trying to inject the changes into
the TINY compiler in such a way that, at every step, we still had a real, working compiler. In other words,
I was attempting an incremental enhancement of the language and its compiler, while at the same time
explaining to you what I was doing.

That's a tough act to pull off! I finally realized that it was dumb to try. Having gotten this far using the idea
of small experiments based on single-character tokens and simple, special-purpose programs, I had
abandoned them in favor of working with the full compiler. It wasn't working.

So we're going to go back to our roots, so to speak. In this installment and the next, I'll be using single-
character tokens again as we study the concepts of procedures, unfettered by the other baggage that we have

accumulated in the previous sessions. As a matter of fact, I won't even attempt, at the end of this session, to
merge the constructs into the TINY compiler. We'll save that for later.

After all this time, you don't need more buildup than that, so let's waste no more time and dive right in.

THE BASICS
All modern CPU's provide direct support for procedure calls, and the **x86 is no exception. For the **x86, the
call is a **CALL, and the return is **RET. All we have to do is to arrange for the compiler to issue these
commands at the proper place.

Actually, there are really THREE things we have to address. One of them is the call/return mechanism.
The second is the mechanism for DEFINING the procedure in the first place. And, finally, there is the issue
of passing parameters to the called procedure. None of these things are really very difficult, and we can of
course borrow heavily on what people have done in other languages ... there's no need to reinvent the wheel
here. Of the three issues, that of parameter passing will occupy most of our attention, simply because there
are so many options available.

A BASIS FOR EXPERIMENTS
As always, we will need some software to serve as a basis for what we are doing. We don't need the full
TINY compiler, but we do need enough of a program so that some of the other constructs are present.
Specifically, we need at least to be able to handle statements of some sort, and data declarations.

The program shown below is that basis. It's a vestigial form of TINY, with single-character tokens. It has
data declarations, but only in their simplest form ... no lists or initializers. It has assignment statements, but only
of the kind

 <ident> = <ident>

In other words, the only legal expression is a single variable name. There are no control constructs ... the
only legal statement is the assignment.

Most of the program is just the standard Cradle routines. I've shown the whole thing here, just to make sure
we're all starting from the same point:**

Begin with file: Cradle13.c

Note that we DO have a symbol table, and there is logic to check a variable name to make sure it's a legal one.
It's also worth noting that I have included the code you've seen before to provide for white space and
newlines. **

Once you've copied the program **, the first step is to compile it and make sure it works. Give it a few
declarations, and then a begin-block. Try something like:

 va (for VAR A)
 vb (for VAR B)
 vc (for VAR C)
 b (for BEGIN)
 a=b
 b=c
 e. (for END.)

As usual, you should also make some deliberate errors, and verify that the program catches them correctly.

DECLARING A PROCEDURE
If you're satisfied that our little program works, then it's time to deal with the procedures. Since we haven't
talked about parameters yet, we'll begin by considering only procedures that have no parameter lists.

As a start, let's consider a simple program with a procedure, and think about the code we'd like to see generated
for it:

 PROGRAM FOO;
 .
 .
 PROCEDURE BAR; BAR:
 BEGIN .
 . .
 . .
 END; RET

 BEGIN { MAIN PROGRAM } MAIN:
 . .
 . .
 FOO; CALL BAR
 . .
 . .
 END. END MAIN

Here I've shown the high-order language constructs on the left, and the desired assembler code on the right.
The first thing to notice is that we certainly don't have much code to generate here! For the great bulk of
both the procedure and the main program, our existing constructs take care of the code to be generated.

The key to dealing with the body of the procedure is to recognize that although a procedure may be quite long,
declaring it is really no different than declaring a variable. It's just one more kind of declaration. We can
write the BNF:

 <declaration> = <data decl> | <procedure>

This means that it should be easy to modify TopDecl to deal with procedures. What about the syntax of a
procedure? Well, here's a suggested syntax, which is essentially that of Pascal:

 <procedure> = PROCEDURE <ident> <begin-block>

There is practically no code generation required, other than that generated within the begin-block. We need
only emit a label at the beginning of the procedure, and an RET at the end.

Here's the required code:**

**Add to Prototypes:
 void DoProc(void); void xReturn(void);
 void DoMain(void); void Prolog(void);
 void Epilog(void); void Header(void);

void DoProc() /* Parse and Translate a Procedure Declaration */
{ char Name;

 Match('p');

 Name = GetName();
 Fin();
 if(InTable(Name))
 { Duplicate(Name);
 }
 ndx = GetNdx(Name);
 ST[ndx] = 'p';
 PostLabel(Name);
 BeginBlock();
 xReturn();
}
/*-------------------------------*/

Note that I've added a new code generation routine, xReturn, which merely emits an RET instruction. The
creation of that routine is "left as an exercise for the student."**

void xReturn() /* Store an RET */
{
 EmitLn("ret");
}
/*-------------------------------*/

To finish this version, add the following line within the Case statement in DoBlock:**

void DoBlock() /* Parse and Translate a Block of Statements */
{
 SkipWhite();
 while(Look != 'e')
 { switch(Look)
 { case 'p':
 DoProc();
 break;
 default:
 Assignment();
 break;
 }
 Fin();
 SkipWhite();
 }
}
/*-------------------------------*/

I should mention that this structure for declarations, and the BNF that drives it, differs from standard Pascal.
In the Jensen & Wirth definition of Pascal, variable declarations, in fact ALL kinds of declarations, must
appear in a specific sequence, i.e. labels, constants, types, variables, procedures, and main program. To
follow such a scheme, we should separate the two declarations, and have code in the main program
something like

 DoVars;
 DoProcs;
 DoMain;

However, most implementations of Pascal, including Turbo, don't require that order and let you freely mix
up the various declarations, as long as you still don't try to refer to something before it's declared.
Although it may be more aesthetically pleasing to declare all the global variables at the top of the program, it

certainly doesn't do any HARM to allow them to be sprinkled around. In fact, it may do some GOOD, in the
sense that it gives you the opportunity to do a little rudimentary information hiding. Variables that
should be accessed only by the main program, for example, can be declared just before it and will thus be
inaccessible by the procedures.

OK, try this new version out. Note that we can declare as many procedures as we choose (as long as we
don't run out of single-character names!), and the labels and RET's all come out in the right places.
**Try: vavbvcb <cr> pdba=be <cr> pebb=ce <cr> c=ae.

It's worth noting here that I do _NOT_ allow for nested procedures. In TINY, all procedures must be
declared at the global level, the same as in C. There has been quite a discussion about this point in the
Computer Language Forum of CompuServe. It turns out that there is a significant penalty in complexity that
must be paid for the luxury of nested procedures. What's more, this penalty gets paid at RUN TIME, because
extra code must be added and executed every time a procedure is called. I also happen to believe that nesting
is not a good idea, simply on the grounds that I have seen too many abuses of the feature. Before going on to
the next step, it's also worth noting that the "main program" as it stands is incomplete, since it doesn't have the
label and END statement. Let's fix that little oversight:**

void DoMain() /* Parse and Translate a Main Program */
{
 Match('b');
 Fin();
 Prolog();
 DoBlock();
 Epilog();
}
/*-------------------------------*/

void main() /* Main Program */
{
 Init();
 TopDecls();
 DoMain();
}
/*-------------------------------*/

Note that DoProc and DoMain are not quite symmetrical. DoProc uses a call to BeginBlock, whereas DoMain
cannot. That's because a procedure is signaled by the keyword PROCEDURE (abbreviated by a 'p' here),
while the main program gets no keyword other than the BEGIN itself.

And _THAT_ brings up an interesting question: WHY?

If we look at the structure of C programs, we find that all functions are treated just alike, except that the
main program happens to be identified by its name, "main." Since C functions can appear in any order, the
main program can also be anywhere in the compilation unit.

In Pascal, on the other hand, all variables and procedures must be declared before they're used, which
means that there is no point putting anything after the main program ... it could never be accessed. The "main
program" is not identified at all, other than being that part of the code that comes after the global BEGIN. In
other words, if it ain't anything else, it must be the main program.

This causes no small amount of confusion for beginning programmers, and for big Pascal programs
sometimes it's difficult to find the beginning of the main program at all. This leads to conventions such as
identifying it in comments:

 BEGIN { of MAIN }

This has always seemed to me to be a bit of a kludge. The question comes up: Why should the main
program be treated so much differently than a procedure? In fact, now that we've recognized that
procedure declarations are just that ... part of the global declarations ... isn't the main program just one more
declaration, also?

The answer is yes, and by treating it that way, we can simplify the code and make it considerably more
orthogonal. I propose that we use an explicit keyword, PROGRAM, to identify the main program (Note that
this means that we can't start the file with it, as in Pascal). In this case, our BNF becomes:

 <declaration> = <data decl> | <procedure> | <main program>

 <procedure> = PROCEDURE <ident> <begin-block>

 <main program> = PROGRAM <ident> <begin-block>

The code also looks much better, at least in the sense that DoMain and DoProc look more alike:**

void DoMain() /* Parse and Translate a Main Program */
{ char Name;

 Match('P');
 Name = GetName();
 Fin();
 if(InTable(Name))
 { Duplicate(Name);
 }
 Prolog();
 BeginBlock();
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{ char a_string[25];

 while(Look != '.')
 { switch(Look)
 { case 'v':
 Decl();
 break;
 case 'p':
 DoProc();
 break;
 case 'P':
 DoMain();
 break;
 default:
 strcpy(a_string, "Unrecognized Keyword ");
 a_string[21] = Look;
 _Abort(a_string);
 break;
 }

 Fin();
 }
}
/*-------------------------------*/

void main() /* Main Program */
{
 Init();
 Header();
 TopDecls();
 Epilog();
}
/*-------------------------------*/

void Epilog() /* Write the Epilog */
{
 printf("\nDONE:\n");
 EmitLn("INT 20H");
 printf("START\tENDP\n");
}
/*-------------------------------*/

void Prolog() /* Write the Prolog */
{
 printf("START\tPROC\tNEAR\n");
 printf(";MAIN:..........................");
 printf("\n");
}
/*-------------------------------*/

void Header() /* Write Header Info */
{
 printf(";\t*************TINY Compiler*************\n");
 EmitLn("jmp START");
}
/*-------------------------------*/

Since the declaration of the main program is now within the loop of TopDecl, that does present some
difficulties. How do we ensure that it's the last thing in the file? And how do we ever exit from the loop? My
answer for the second question, as you can see, was to bring back our old friend the period. Once the parser
sees that, we're done.

To answer the first question: it depends on how far we're willing to go to protect the programmer from
dumb mistakes. In the code that I've shown, there's nothing to keep the programmer from adding code after
the main program ... even another main program. The code will just not be accessible. However, we
COULD access it via a FORWARD statement, which we'll be providing later. As a matter of fact, many
assembler language programmers like to use the area just after the program to declare large, uninitialized
data blocks, so there may indeed be some value in not requiring the main program to be last. We'll leave it as
it is.

If we decide that we should give the programmer a little more help than that, it's pretty easy to add some logic
to kick us out of the loop once the main program has been processed. Or we could at least flag an error if
someone tries to include two mains.

CALLING THE PROCEDURE
If you're satisfied that things are working, let's address the second half of the equation ... the call.

Consider the BNF for a procedure call:

 <proc_call> = <identifier>

for an assignment statement, on the other hand, the BNF is:

 <assignment> = <identifier> '=' <expression>

At this point we seem to have a problem. The two BNF statements both begin on the right-hand side with the
token <identifier>. How are we supposed to know, when we see the identifier, whether we have a procedure
call or an assignment statement? This looks like a case where our parser ceases being predictive, and indeed
that's exactly the case. However, it turns out to be an easy problem to fix, since all we have to do is to look at
the type of the identifier, as recorded in the symbol table. As we've discovered before, a minor local
violation of the predictive parsing rule can be easily handled as a special case.

Here's how to do it:**

**Add to Prototypes:
 void AssignOrProc(void); void CallProc(char);

void Assignment(char Name) /* Parse and Translate an Assignment Statement */
{
 Match('=');
 StoreVarA(Name);
 Expression();
 StoreVarB();
}
/*-------------------------------*/

void AssignOrProc() /* Decide if a Statement is an Assignment */
{ char a_string[40]; /* or Procedure Call */
 char Name, type;

 Name = GetName();
 type = TypeOf(Name);
 switch(type)
 { case ' ':
 Undefined(Name);
 break;
 case 'v':
 Assignment(Name);
 break;
 case 'p':
 CallProc(Name);
 break;
 default:
 strcpy(a_string, "Identifier ' ' Cannot Be Used Here");
 a_string[12] = Name;
 _Abort(a_string);

 }
}
/*-------------------------------*/

void DoBlock() /* Parse and Translate a Block of Statements */
{
 SkipWhite();
 while(Look != 'e')
 { AssignOrProc();
 Fin();
 SkipWhite();
 }
}
/*-------------------------------*/

As you can see, procedure Block now calls AssignOrProc instead of Assignment. The function of this new
procedure is to simply read the identifier, determine its type, and then call whichever procedure is
appropriate for that type. Since the name has already been read, we must pass it to the two procedures,
and modify Assignment to match. Procedure CallProc is a simple code generation routine:**

void CallProc(char Name) /* Call a Procedure */
{ char a_string[10];

 strcpy(a_string, "call ");
 a_string[6] = Name;
 EmitLn(a_string);
}
/*-------------------------------*/

Well, at this point we have a compiler that can deal with procedures. It's worth noting that procedures
can call procedures to any depth. So even though we don't allow nested DECLARATIONS, there is certainly
nothing to keep us from nesting CALLS, just as we would expect to do in any language. We're getting there,
and it wasn't too hard, was it?

Of course, so far we can only deal with procedures that have no parameters. The procedures can only
operate on the global variables by their global names. So at this point we have the equivalent of BASIC's
GOSUB construct. Not too bad ... after all lots of serious programs were written using GOSUBs, but we can do
better, and we will. That's the next step.

PASSING PARAMETERS
Again, we all know the basic idea of passed parameters, but let's review them just to be safe.

In general the procedure is given a parameter list, for example

 PROCEDURE FOO(X, Y, Z)

In the declaration of a procedure, the parameters are called formal parameters, and may be referred to in
the body of the procedure by those names. The names used for the formal parameters are really
arbitrary. Only the position really counts. In the example above, the name 'X' simply means "the first
parameter" wherever it is used.

When a procedure is called, the "actual parameters" passed to it are associated with the formal parameters,
on a one-for-one basis.

The BNF for the syntax looks something like this:

 <procedure> = PROCEDURE <ident>
 '(' <param-list> ')' <begin-block>

 <param_list> = <parameter> (',' <parameter>)* | null

Similarly, the procedure call looks like:

 <proc call> = <ident> '(' <param-list> ')'

Note that there is already an implicit decision built into this syntax. Some languages, such as Pascal and Ada,
permit parameter lists to be optional. If there are no parameters, you simply leave off the parens completely.
Other languages, like C and Modula 2, require the parens even if the list is empty. Clearly, the example we just
finished corresponds to the former point of view. But to tell the truth I prefer the latter. For procedures alone,
the decision would seem to favor the "listless" approach.
The statement

 Initialize; ,

standing alone, can only mean a procedure call. In the parsers we've been writing, we've made heavy use
of parameterless procedures, and it would seem a shame to have to write an empty pair of parens for each
case.

But later on we're going to be using functions, too. And since functions can appear in the same places as
simple scalar identifiers, you can't tell the difference between the two. You have to go back to the
declarations to find out. Some folks consider this to be an advantage. Their argument is that an identifier
gets replaced by a value, and what do you care whether it's done by substitution or by a function? But we
sometimes _DO_ care, because the function may be quite time-consuming. If, by writing a simple identifier
into a given expression, we can incur a heavy run-time penalty, it seems to me we ought to be made aware of
it.

Anyway, Niklaus Wirth designed both Pascal and Modula 2. I'll give him the benefit of the doubt and assume
that he had a good reason for changing the rules the second time around!

Needless to say, it's an easy thing to accomodate either point of view as we design a language, so this one is
strictly a matter of personal preference. Do it whichever way you like best.

Before we go any further, let's alter the translator to handle a (possibly empty) parameter list. For now we
won't generate any extra code ... just parse the syntax. The code for processing the declaration has very
much the same form we've seen before when dealing with VAR-lists:**

**Add to Prototypes:
 void FormalList(void); void FormalParam(void);
 void Param(void); void ParamList(void);
 void Call(char);

void FormalList() /*Process the Formal Parameter List of a Procedure*/
{
 Match('(');
 if(Look != ')')

 { FormalParam();
 while(Look == ',')
 { Match(',');
 FormalParam();
 }
 }
 Match(')');
}
/*-------------------------------*/

Procedure DoProc needs to have a line added to call FormalList:**

void DoProc() /* Parse and Translate a Procedure Declaration */
{ char Name;
 int ndx;

 Match('p');
 Name = GetName();
 FormalList();
 Fin();
 if(InTable(Name))
 { Duplicate(Name);
 }
 ndx = GetNdx(Name);
 ST[ndx] = 'p';
 PostLabel(Name);
 BeginBlock();
 xReturn();
}
/*-------------------------------*/

For now, the code for FormalParam is just a dummy one that simply skips the parameter name:**

void FormalParam() /* Process a Formal Parameter */
{ char Name;

 Name = GetName();
}
/*-------------------------------*/

For the actual procedure call, there must be similar code to process the actual parameter list:**

void Param() /* Process an Actual Parameter */
{ char Name;

 Name = GetName();
}
/*-------------------------------*/

void ParamList() /* Process the Parameter List for a Procedure Call */
{
 Match('(');
 if(Look != ')')
 { Param();

 while(Look == ',')
 { Match(',');
 Param();
 }
 }
 Match(')');
}
/*-------------------------------*/

void CallProc(char Name) /* Process a Procedure Call */
{
 ParamList();
 Call(Name);
}
/*-------------------------------*/

void Call(char Name) /* Call a Procedure */
{ char a_string[10];

 strcpy(a_string, "call ");
 a_string[6] = Name;
 EmitLn(a_string);
}
/*-------------------------------*/

Note here that CallProc is no longer just a simple code generation routine. It has some structure to it.
To handle this, I've renamed the code generation routine to just Call, and called it from within CallProc.

OK, if you'll add all this code to your translator and try it out, you'll find that you can indeed parse the syntax
properly. I'll note in passing that there is _NO_ checking to make sure that the number (and, later, types)
of formal and actual parameters match up. In a production compiler, we must of course do this. We'll ignore
the issue now if for no other reason than that the structure of our symbol table doesn't currently give us a place
to store the necessary information. Later on, we'll have a place for that data and we can deal with the issue
then.

THE SEMANTICS OF PARAMETERS
So far we've dealt with the SYNTAX of parameter passing, and we've got the parsing mechanisms in place to
handle it. Next, we have to look at the SEMANTICS, i.e., the actions to be taken when we encounter
parameters. This brings us square up against the issue of the different ways parameters can be passed.

There is more than one way to pass a parameter, and the way we do it can have a profound effect on the
character of the language. So this is another of those areas where I can't just give you my solution. Rather, it's
important that we spend some time looking at the alternatives so that you can go another route if you
choose to.

There are two main ways parameters are passed:

 o By value
 o By reference (address)

The differences are best seen in the light of a little history.

The old FORTRAN compilers passed all parameters by reference. In other words, what was actually passed
was the address of the parameter. This meant that the called subroutine was free to either read or write

that parameter, as often as it chose to, just as though it were a global variable. This was actually quite an
efficient way to do things, and it was pretty simple since the same mechanism was used in all cases,
with one exception that I'll get to shortly.

There were problems, though. Many people felt that this method created entirely too much coupling between
the called subroutine and its caller. In effect, it gave the subroutine complete access to all variables that
appeared in the parameter list.

Many times, we didn't want to actually change a parameter, but only use it as an input. For example, we
might pass an element count to a subroutine, and wish we could then use that count within a DO-loop. To
avoid changing the value in the calling program, we had to make a local copy of the input parameter, and
operate only on the copy. Some FORTRAN programmers, in fact, made it a practice to copy ALL parameters
except those that were to be used as return values. Needless to say, all this copying defeated a good bit of
the efficiency associated with the approach.

There was, however, an even more insidious problem, which was not really just the fault of the "pass by
reference" convention, but a bad convergence of several implementation decisions.

Suppose we have a subroutine:

 SUBROUTINE FOO(X, Y, N)

where N is some kind of input count or flag. Many times, we'd like to be able to pass a literal or even an
expression in place of a variable, such as:

 CALL FOO(A, B, J + 1)

Here the third parameter is not a variable, and so it has no address. The earliest FORTRAN compilers did
not allow such things, so we had to resort to subterfuges like:

 K = J + 1
 CALL FOO(A, B, K)

Here again, there was copying required, and the burden was on the programmer to do it. Not good.

Later FORTRAN implementations got rid of this by allowing expressions as parameters. What they did
was to assign a compiler-generated variable, store the value of the expression in the variable, and then pass
the address of the expression.

So far, so good. Even if the subroutine mistakenly altered the anonymous variable, who was to know or
care? On the next call, it would be recalculated anyway.

The problem arose when someone decided to make things more efficient. They reasoned, rightly enough,
that the most common kind of "expression" was a single integer value, as in:

 CALL FOO(A, B, 4)

It seemed inefficient to go to the trouble of "computing" such an integer and storing it in a temporary variable,
just to pass it through the calling list. Since we had to pass the address of the thing anyway, it seemed to
make lots of sense to just pass the address of the literal integer, 4 in the example above.

To make matters more interesting, most compilers, then and now, identify all literals and store them

separately in a "literal pool," so that we only have to store one value for each unique literal. That
combination of design decisions: passing expressions, optimization for literals as a special case, and use of
a literal pool, is what led to disaster.

To see how it works, imagine that we call subroutine FOO as in the example above, passing it a literal 4.
Actually, what gets passed is the address of the literal 4, which is stored in the literal pool. This address
corresponds to the formal parameter, K, in the subroutine itself.

Now suppose that, unbeknownst to the programmer, subroutine FOO actually modifies K to be, say, -7.
Suddenly, that literal 4 in the literal pool gets CHANGED, to a -7. From then on, every expression that uses
a 4 and every subroutine that passes a 4 will be using the value of -7 instead! Needless to say, this can lead
to some bizarre and difficult-to-find behavior. The whole thing gave the concept of pass-by-reference a bad
name, although as we have seen, it was really a combination of design decisions that led to the problem.

In spite of the problem, the FORTRAN approach had its good points. Chief among them is the fact that
we don't have to support multiple mechanisms. The same scheme, passing the address of the
argument, works for EVERY case, including arrays. So the size of the compiler can be reduced.

Partly because of the FORTRAN gotcha, and partly just because of the reduced coupling involved, modern
languages like C, Pascal, Ada, and Modula 2 generally pass scalars by value.

This means that the value of the scalar is COPIED into a separate value used only for the call. Since the value
passed is a copy, the called procedure can use it as a local variable and modify it any way it likes. The value in
the caller will not be changed.

It may seem at first that this is a bit inefficient, because of the need to copy the parameter. But remember that
we're going to have to fetch SOME value to pass anyway, whether it be the parameter itself or an address
for it. Inside the subroutine, using pass-by-value is definitely more efficient, since we eliminate one level of
indirection. Finally, we saw earlier that with FORTRAN, it was often necessary to make copies within the
subroutine anyway, so pass-by-value reduces the number of local variables. All in all, pass-by-value is better.

Except for one small little detail: if all parameters are passed by value, there is no way for a called to procedure
to return a result to its caller! The parameter passed is NOT altered in the caller, only in the called procedure.
Clearly, that won't get the job done.

There have been two answers to this problem, which are equivalent. In Pascal, Wirth provides for VAR
parameters, which are passed-by-reference. What a VAR parameter is, in fact, is none other than our old
friend the FORTRAN parameter, with a new name and paint job for disguise. Wirth neatly gets around the
"changing a literal" problem as well as the "address of an expression" problem, by the simple expedient of
allowing only a variable to be the actual parameter. In other words, it's the same restriction that the earliest
FORTRANs imposed.

C does the same thing, but explicitly. In C, _ALL_ parameters are passed by value. One kind of variable
that C supports, however, is the pointer. So by passing a pointer by value, you in effect pass what it points to
by reference. In some ways this works even better yet, because even though you can change the variable
pointed to all you like, you still CAN'T change the pointer itself. In a function such as strcpy, for example,
where the pointers are incremented as the string is copied, we are really only incrementing copies of the
pointers, so the values of those pointers in the calling procedure still remain as they were. To modify a
pointer, you must pass a pointer to the pointer.

Since we are simply performing experiments here, we'll look at BOTH pass-by-value and pass-by-reference.
That way, we'll be able to use either one as we need to. It's worth mentioning that it's going to be tough to
use the C approach to pointers here, since a pointer is a different type and we haven't studied types yet!

PASS-BY-VALUE
Let's just try some simple-minded things and see where they lead us. Let's begin with the pass-by-value
case. Consider the procedure call:

 FOO(X, Y)

Almost the only reasonable way to pass the data is through the CPU stack. So the code we'd like to see
generated might look something like this:**

 PUSH X
 PUSH Y
 CALL FOO

That certainly doesn't seem too complex!

When the CALL is executed, the CPU pushes the return address onto the stack and jumps to FOO. At this
point the stack will look like this:**

.

.
Value of X (2 bytes)
Value of Y (2 bytes)

SP --> Return Address (2 bytes)

So the values of the parameters have addresses that are fixed offsets from the stack pointer. In this
example, the addresses are:**

X: (SP)+4
Y: (SP)+2

Now consider what the called procedure might look like:

 PROCEDURE FOO(A, B)
 BEGIN
 A = B
 END

(Remember, the names of the formal parameters are arbitrary ... only the positions count.)

The desired output code might look like:**

 FOO: MOV SI, SP
 MOV AX, [SI+2]
 MOV [SI+4], AX
 RET

Note that, in order to address the formal parameters, we're going to have to know which position they have in
the parameter list. This means some changes to the symbol table stuff. In fact, for our single-character case
it's best to just create a new symbol table for the formal parameters.

Let's begin by declaring a new table:**

int Params[26];

We also will need to keep track of how many parameters a given procedure has:**

int NumParams;

**We also need a params flag, to signify when we are within a function.

int PFlag = 0;

And we need to initialize the new table. Now, remember that the formal parameter list will be different for each
procedure that we process, so we'll need to initialize that table anew for each procedure. Here's the initializer:**

**Add to Prototypes:
 void ClearParams(void); int ParamNumber(char);
 int IsParam(char); void AddParam(char);
 void LoadParam(int); void StoreParam(int);
 void Push(void);

void ClearParams() /* Initialize Parameter Table to Null */
{ int i;

 for(i=0; i<26; i++)
 { Params[i] = 0;
 }
 NumParams = 0;
}
/*-------------------------------*/

We'll put a call to this procedure in Init, and also at the end of DoProc:**

void Init() /* Initialize */
{ int i;

 _GetChar();
 SkipWhite();
 for(i=0; i<26; i++)
 { ST[i] = ' ';
 }
 ClearParams();
}
/*-------------------------------*/

void DoProc() /* Parse and Translate a Procedure Declaration */
{ char Name;
 int ndx;

 Match('p');
 Name = GetName();
 FormalList();
 Fin();
 if(InTable(Name))
 { Duplicate(Name);
 }
 ndx = GetNdx(Name);
 ST[ndx] = 'p';

 PostLabel(Name);
 BeginBlock();
 xReturn();
 ClearParams();
}
/*-------------------------------*/

Note that the call within DoProc ensures that the table will be clear when we're in the main program.

OK, now we need a few procedures to work with the table. The next few functions are essentially copies of
InTable, TypeOf, etc.:**

int ParamNumber(char Name) /* Find the Parameter Number */
{ int ParamNum, ndx;

 ndx = GetNdx(Name);
 ParamNum = Params[ndx];
 return ParamNum;
}
/*-------------------------------*/

int IsParam(char Name) /* See if an Identifier is a Parameter */
{ int rval=0, ndx;

 ndx = GetNdx(Name);
 if(Params[ndx] != 0)
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

void AddParam(char Name) /* Add a New Parameter to Table */
{ int ndx;

 if(IsParam(Name))
 { Duplicate(Name);
 }
 NumParams++;
 ndx = GetNdx(Name);
 Params[ndx] = NumParams;
}
/*-------------------------------*/

Finally, we need some code generation routines:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{ int Offset;

 if(PFlag == 0)
 { PFlag = 1;
 EmitLn("mov si, sp");

 }
 Offset = 2 + 2 * (NumParams - N);
 Emit("mov ax, [si+");
 printf("%d]\n", Offset);
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{ int Offset;

 if(PFlag == 0)
 { PFlag = 1;
 EmitLn("mov si, sp");
 }
 Offset = 2 + 2 * (NumParams - N);
 Emit("mov [si+");
 printf("%d], ax\n", Offset);
}
/*-------------------------------*/

void Push() /* Push The Primary Register to the Stack */
{
 EmitLn("push ax");
}
/*-------------------------------*/

(The last routine is one we've seen before, but it wasn't in this vestigial version of the program.)

With those preliminaries in place, we're ready to deal with the semantics of procedures with calling lists
(remember, the code to deal with the syntax is already in place).

Let's begin by processing a formal parameter. All we have to do is to add each parameter to the parameter
symbol table:**

void FormalParam() /* Process a Formal Parameter */
{ char Name;

 Name = GetName();
 AddParam(Name);
}
/*-------------------------------*/

Now, what about dealing with a formal parameter when it appears in the body of the procedure? That takes a
little more work. We must first determine that it IS a formal parameter. To do this, I've written a modified
version of TypeOf:**

char TypeOf(char Name) /* Get Type of Symbol */
{ char ch;
 int ndx;

 if(IsParam(Name))
 { ch = 'f';
 }

 else
 { ndx = GetNdx(Name);
 ch = ST[ndx];
 }
 return ch;
}
/*-------------------------------*/

We also must modify AssignOrProc to deal with this new type:**

void AssignOrProc() /* Decide if a Statement is an Assignment */
{ char a_string[40]; /* or Procedure Call */
 char Name, type;

 Name = GetName();
 type = TypeOf(Name);
 switch(type)
 { case ' ':
 Undefined(Name);
 break;
 case 'v':
 case 'f':
 Assignment(Name);
 break;
 case 'p':
 CallProc(Name);
 break;
 default:
 strcpy(a_string, "Identifier ' ' Cannot Be Used Here");
 a_string[12] = Name;
 _Abort(a_string);
 }
}
/*-------------------------------*/

Finally, the code to process an assignment statement and an expression must be extended:**

void Expression() /* Parse and Translate an Expression */
{ char Name;
 int ParamNum;

 Name = GetName();
 if(IsParam(Name))
 { ParamNum = ParamNumber(Name);
 LoadParam(ParamNum);
 }
 else
 { LoadVar(Name);
 }
}
/*-------------------------------*/

void Assignment(char Name) /*Parse and Translate an */
{ int ParamNum; /*Assignment Statement */

 Match('=');
 Expression();
 if(IsParam(Name))
 { ParamNum = ParamNumber(Name);
 StoreParam(ParamNum);
 }
 else
 { StoreVarA(Name);
 StoreVarB();
 }
}
/*-------------------------------*/

As you can see, these procedures will treat every variable name encountered as either a formal parameter or
a global variable, depending on whether or not it appears in the parameter symbol table. Remember that we
are using only a vestigial form of Expression. In the final program, the change shown here will have to be
added to Factor, not Expression.

The rest is easy. We need only add the semantics to the actual procedure call, which we can do with one new
line of code:**

void Param() /* Process an Actual Parameter */
{
 Expression();
 Push();
}
/*-------------------------------*/

void xReturn() /* Store an RET */
{
 PFlag = 0;
 EmitLn("ret");
}
/*-------------------------------*/

That's it. Add these changes to your program and give it a try. Try declaring one or two procedures, each with
a formal parameter list. Then do some assignments, using combinations of global and formal parameters.
You can call one procedure from within another, but you cannot DECLARE a nested procedure. You can
even pass formal parameters from one procedure to another. If we had the full syntax of the language here,
you'd also be able to do things like read or write formal parameters or use them in complicated expressions.

WHAT'S WRONG?
At this point, you might be thinking: Surely there's more to this than a few pushes and pops. There must be
more to passing parameters than this.

You'd be right. As a matter of fact, the code that we're generating here leaves a lot to be desired in several
respects.

The most glaring oversight is that it's wrong! If you'll look back at the code for a procedure call, you'll see that
the caller pushes each actual parameter onto the stack before it calls the procedure. The procedure USES
that information, but it doesn't change the stack pointer. That means that the stuff is still there when we
return. SOMEBODY needs to clean up the stack, or we'll soon be in very hot water!

Fortunately, that's easily fixed. All we have to do is to increment the stack pointer when we're finished.

Should we do that in the calling program, or the called procedure? Some folks let the called procedure
clean up the stack, since that requires less code to be generated per call, and since the procedure, after all,
knows how many parameters it's got. But that means that it must do something with the return address so
as not to lose it.

I prefer letting the caller clean up, so that the callee need only execute a return. Also, it seems a bit more
balanced, since the caller is the one who "messed up" the stack in the first place. But THAT means that
the caller must remember how many items it pushed. To make things easy, I've modified the procedure
ParamList to be a function instead of a procedure, returning the number of bytes pushed:**

**Change Prototypes to:
 int ParamList(void);

int ParamList() /* Process the Parameter List for a Procedure Call */
{ int N=0, PList;

 Match('(');
 if(Look != ')')
 { Param();
 N++;
 while(Look == ',')
 { Match(',');
 Param();
 N++;
 }
 }
 Match(')');
 PList = 2 * N;
 return PList;
}
/*-------------------------------*/

Procedure CallProc then uses this to clean up the stack:**

void CallProc(char Name) /* Process a Procedure Call */
{ int Num;

 Num = ParamList();
 Call(Name);
 CleanStack(Num);
}
/*-------------------------------*/

Here I've created yet another code generation procedure:**

**Add to Prototypes:
 void CleanStack(int);

void CleanStack(int Num) /*Adjust Stack Pointer Upwards by N Bytes*/
{
 if(Num > 0)
 { Emit("ADD sp, ");

 printf("%d\n", Num);
 }
}
/*-------------------------------*/

OK, if you'll add this code to your compiler, I think you'll find that the stack is now under control.

The next problem has to do with our way of addressing relative to the stack pointer. That works fine in our
simple examples, since with our rudimentary form of expressions nobody else is messing with the stack. But
consider a different example as simple as:

 PROCEDURE FOO(A, B)
 BEGIN
 A = A + B
 END

The code generated by a simple-minded parser might be:**

 FOO: MOV SI, SP
MOV AX, [SI+4] ; Fetch A
PUSH AX ; Push it
MOV AX, [SI+ 2] ; Fetch B
POP BX
ADD AX, BX ; Add A
MOV [SI+4], AX ; Store A
RET

**[snip]
Fixing the compiler to generate this code is a lot easier than it is to explain it. All we need to do is to modify
the code generation created by DoProc. Since that makes the code a little more than one line, I've created new
procedures to deal with it, paralleling the Prolog and Epilog procedures called by DoMain:**

**Add to Prototypes:
 void ProcProlog(char); void ProcEpilog(void);

void ProcProlog(char Name) /* Write the Prolog for a Procedure */
{
 PostLabel(Name);
 if(NumParams > 0)
 { EmitLn("mov si, sp");
 }
}
/*-------------------------------*/

void ProcEpilog() /* Write the Epilog for a Procedure */
{
 xReturn();
}
/*-------------------------------*/

Procedure DoProc now just calls these:**

void DoProc() /* Parse and Translate a Procedure Declaration */
{ char Name;
 int ndx;

 Match('p');
 Name = GetName();
 FormalList();
 Fin();
 if(InTable(Name))
 { Duplicate(Name);
 }
 ndx = GetNdx(Name);
 ST[ndx] = 'p';
 ProcProlog(Name);
 BeginBlock();
 ProcEpilog();
 ClearParams();
}
/*-------------------------------*/

Finally, we need to change the references to SP in procedures LoadParam and StoreParam:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{ int Offset;

 Offset = 2 + 2 * (NumParams - N);
 Emit("mov ax, [si+");
 printf("%d]\n", Offset);
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{ int Offset;

 Offset = 2 + 2 * (NumParams - N);
 Emit("mov [si+");
 printf("%d], ax\n", Offset);
}
/*-------------------------------*/

That's all it takes. Try this out and see how you like it.
**Try: vavbvc <cr> px(a,b,c) <cr> ba=b b=ce <cr>

pz() <cr> bb=ce <cr> Pwbe.

At this point we are generating some relatively nice code for procedures and procedure calls. Within the
limitation that there are no local variables (yet) and that no procedure nesting is allowed, this code is just what
we need.

There is still just one little small problem remaining:

 WE HAVE NO WAY TO RETURN RESULTS TO THE CALLER!

But that, of course, is not a limitation of the code we're generating, but one inherent in the call-by-value
protocol. Notice that we CAN use formal parameters in any way inside the procedure. We can calculate
new values for them, use them as loop counters (if we had loops, that is!), etc. So the code is doing what it's
supposed to. To get over this last problem, we need to look at the alternative protocol.

CALL-BY-REFERENCE
This one is easy, now that we have the mechanisms already in place. We only have to make a few
changes to the code generation. Instead of pushing a value onto the stack, we must push an address. **

We'll be making a new version of the test program for this.
Before we do anything else,

>>>> MAKE A COPY <<<<

of the program as it now stands, because we'll be needing it again later.

Let's begin by looking at the code we'd like to see generated for the new case. Using the same example as
before, we need the call

 FOO(X, Y)

to be translated to:**

LEA AX, X
PUSH AX ; Push the address of X
LEA AX, Y
PUSH AX ; Push the address of Y
CALL FOO ; Call FOO

That's a simple matter of a slight change to Param:**

void Param() /* Process an Actual Parameter */
{ char Name, a_string[20];

 Name = GetName();
 strcpy(a_string, "lea ax, ");
 a_string[9] = Name;
 EmitLn(a_string);
 EmitLn("push ax");
}
/*-------------------------------*/

(Note that with pass-by-reference, we can't have expressions in the calling list, so Param can just read the
name directly.)

At the other end, the references to the formal parameters must be given one level of indirection:**

FOO: MOV SI, SP
MOV DI, [SI+4] ; Fetch the address of A
MOV AX, [DI] ; Fetch A
PUSH AX ; Push it
MOV DI, [SI+2] ; Fetch the address of B

MOV AX, [DI] ; Fetch B
POP BX
ADD AX, BX ; Add A
MOV DI, [SI+4] ; Fetch the address of A
MOV [DI], AX : Store A
RET

All of this can be handled by changes to LoadParam and StoreParam:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{ int Offset;

 Offset = 2 + 2 * (NumParams - N);
 Emit("mov di, [si+");
 printf("%d]\n", Offset);
 Emit("mov ax, [di]");
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{ int Offset;

 Offset = 2 + 2 * (NumParams - N);
 Emit("mov di, [si+");
 printf("%d]\n", Offset);
 Emit("mov [di], ax");
}
/*-------------------------------*/

**[snip]
That should do it. Give it a try and see if it's generating reasonable-looking code. As you will see, the
code is hardly optimal, since we reload the address register every time a parameter is needed. But
that's consistent with our KISS approach here, of just being sure to generate code that works. We'll just
make a little note here, that here's yet another candidate for optimization, and press on.

Now we've learned to process parameters using pass-by-value and pass-by-reference. In the real world, of
course, we'd like to be able to deal with BOTH methods. We can't do that yet, though, because we have not
yet had a session on types, and that has to come first.

If we can only have ONE method, then of course it has to be the good ol' FORTRAN method of pass-by-
reference, since that's the only way procedures can ever return values to their caller.

This, in fact, will be one of the differences between TINY and KISS. In the next version of TINY, we'll use
pass-by-reference for all parameters. KISS will support both methods.

LOCAL VARIABLES
So far, we've said nothing about local variables, and our definition of procedures doesn't allow for them.
Needless to say, that's a big gap in our language, and one that needs to be corrected.

Here again we are faced with a choice: Static or dynamic storage?

In those old FORTRAN programs, local variables were given static storage just like global ones. That is, each
local variable got a name and allocated address, like any other variable, and was referenced by that name.

That's easy for us to do, using the allocation mechanisms already in place. Remember, though, that local
variables can have the same names as global ones. We need to somehow deal with that by assigning unique
names for these variables.

The characteristic of static storage, of course, is that the data survives a procedure call and return. When the
procedure is called again, the data will still be there. That can be an advantage in some applications. In
the FORTRAN days we used to do tricks like initialize a flag, so that you could tell when you were entering a
procedure for the first time and could do any one-time initialization that needed to be done.

Of course, the same "feature" is also what makes recursion impossible with static storage. Any new call to
a procedure will overwrite the data already in the local variables.

The alternative is dynamic storage, in which storage is allocated on the stack just as for passed parameters.
We also have the mechanisms already for doing this. In fact, the same routines that deal with passed (by
value) parameters on the stack can easily deal with local variables as well ... the code to be generated is
the same.
**The purpose of the offset in the **x86 [SI] register is there just for that reason: we can use it to adjust the
stack pointer to make room for locals. Dynamic storage, of course, inherently supports recursion.

When I first began planning TINY, I must admit to being prejudiced in favor of static storage. That's
simply because those old FORTRAN programs were pretty darned efficient ... the early FORTRAN compilers
produced a quality of code that's still rarely matched by modern compilers. Even today, a given program
written in FORTRAN is likely to outperform the same program written in C or Pascal, sometimes by wide
margins. (Whew! Am I going to hear about THAT statement!)

I've always supposed that the reason had to do with the two main differences between FORTRAN
implementations and the others: static storage and pass-by-reference. I know that dynamic storage
supports recursion, but it's always seemed to me a bit peculiar to be willing to accept slower code in the 95%
of cases that don't need recursion, just to get that feature when you need it. The idea is that, with static storage,
you can use absolute addressing rather than indirect addressing, which should result in faster code.
More recently, though, several folks have pointed out to me that there really is no performance penalty
associated with dynamic storage.

**[snip]... most operating systems require position independent code. So I'm convinced, now, that there is no
good reason NOT to use dynamic storage.

Since this use of local variables fits so well into the scheme of pass-by-value parameters, we'll use that
version of the translator to illustrate it. (I _SURE_ hope you kept a copy!)

The general idea is to keep track of how many local parameters there are. Then we use the integer in the
LINK instruction to adjust the stack pointer downward to make room for them. Formal parameters are
addressed as positive offsets from the frame pointer, and locals as negative offsets. With a little bit of
work, the same procedures we've already created can take care of the whole thing.

Let's start by creating a new variable, Base:**

int Base;

We'll use this variable, instead of NumParams, to compute stack offsets. That means changing the two
references to NumParams in LoadParam and StoreParam:**

void LoadParam(int N) /* Load a Parameter to the Primary Register */
{ int Offset;

 Offset = 2 + 2 * (Base - N);
 Emit("mov ax, [si");
 if(Offset > 0)

 { printf("+");
 }
 printf("%d]\n", Offset);
}
/*-------------------------------*/

void StoreParam(int N) /*Store a Parameter from the Primary Register*/
{ int Offset;

 Offset = 2 + 2 * (Base - N);
 Emit("mov [si");
 if(Offset > 0)
 { printf("+");
 }
 printf("%d], ax\n", Offset);
}
/*-------------------------------*/

The idea is that the value of Base will be frozen after we have processed the formal parameters, and won't
increase further as the new, local variables, are inserted in the symbol table. This is taken care of at the end of
FormalList:**

void FormalList() /* Process Formal Parameter List of a Procedure */
{
 Match('(');
 if(Look != ')')
 { FormalParam();
 while(Look == ',')
 { Match(',');
 FormalParam();
 }
 }
 Match(')');
 Fin();
 Base = NumParams;
 NumParams = NumParams + 1;
}
/*-------------------------------*/

(We add **two words to make allowances for the return address and old frame pointer, which end up between
the formal parameters and the locals.)

About all we need to do next is to install the semantics for declaring local variables into the parser. The
routines are very similar to Decl and TopDecls:**

**Add to Prototypes:
 void LocDecl(void); int LocDecls(void);

void LocDecl() /* Parse and Translate a Local Data Declaration */
{ char Name;

 Match('v');
 Name = GetName();
 AddParam(Name);

 Fin();
}
/*-------------------------------*/

int LocDecls() /* Parse and Translate Local Declarations */
{ int n=0;

 while(Look == 'v')
 { LocDecl();
 n++;
 }
 return n;
}
/*-------------------------------*/

Note that LocDecls is a FUNCTION, returning the number of locals to DoProc.

Next, we modify DoProc to use this information:**

void DoProc() /* Parse and Translate a Procedure Declaration */
{ char Name;
 int ndx, k;

 Match('p');
 Name = GetName();
 if(InTable(Name))
 { Duplicate(Name);
 }
 ndx = GetNdx(Name);
 ST[ndx] = 'p';
 FormalList();
 k = LocDecls();
 ProcProlog(Name, k);
 BeginBlock();
 ProcEpilog(k);
 ClearParams();
}
/*-------------------------------*/

(I've made a couple of changes here that weren't really necessary. Aside from rearranging things a bit, I
moved the call to Fin to within FormalList, and placed one inside LocDecls as well. Don't forget to put one at
the end of FormalList, so that we're together here.)

Note the change in the call to ProcProlog. The new argument is the number of WORDS (not bytes) to allocate
space for. Here's the new version of ProcProlog:**

**Change Prototypes to:
 void ProcProlog(char,int); void ProcEpilog(int);

void ProcProlog(char Name, int k) /*Write the Prolog for a Procedure*/
{ int push;

 PostLabel(Name);
 if(NumParams > 1)

 { EmitLn("mov si, sp");
 if(k > 0)
 { push = k * 2;
 Emit("sub sp, ");
 printf("%d\n", push);
 }
 }
}
/*-------------------------------*/

void ProcEpilog(int k) /* Write the Epilog for a Procedure */
{ int pop;

 if(k > 0)
 { pop = k * 2;
 Emit("add sp, ");
 printf("%d\n", pop);
 }
 xReturn();
}
/*-------------------------------*/

That should do it. Add these changes and see how they work.

**Try: vavbvc <cr> px(a,b,c) <cr> ba=b b=ce <cr>
Pwb <cr> x(a,b,c) <cr> e.

If that works okay, create a file, (name it "in.fil"), containing this code:

vavbvc ;declare vars: A,B,C
px(a,b,c) ;declare X
vdvfvg ;declare local vars: D,F,G
ba=g b=f c=de ;begin <assignments> end
py() ;declare Y
vdvfvg ;declare local vars: D,F,G
ba=b d=g f=ce ;begin <assignments> end
pz() ;declare Z
ba=b b=ce ;begin <assignments> end
Pwb ;Main Program: begin
x(a,b,c) ;call X, with passed vars
y() z()e. ;call Y, call Z, end

then, enter: C:> Cradle13 < in.fil > out.asm

and examine the resulting assembly code in "out.asm".

CONCLUSION
At this point you know how to compile procedure declarations and procedure calls, with parameters passed
by reference and by value. You can also handle local variables. As you can see, the hard part is not in
providing the mechanisms, but in deciding just which mechanisms to use. Once we make these decisions, the
code to translate the constructs is really not that difficult. I didn't show you how to deal with the combination
of local parameters and pass-by-reference parameters, but that's a straightforward extension to what
you've already seen. It just gets a little more messy, that's all, since we need to support both mechanisms
instead of just one at a time. I'd prefer to save that one until after we've dealt with ways to handle

different variable types.

That will be the next installment, which will be coming soon to a Forum near you. See you then.

INTRODUCTION
In the last installment (Part XIII: PROCEDURES) I mentioned that in that part and this one, we would cover
the two features that tend to separate the toy language from a real, usable one. We covered procedure calls
in that installment. Many of you have been waiting patiently, since August '89, for me to drop the other shoe.
Well, here it is.

In this installment, we'll talk about how to deal with different data types. As I did in the last segment, I will NOT
incorporate these features directly into the TINY compiler at this time. Instead, I'll be using the same
approach that has worked so well for us in the past: using only fragments of the parser and single-
character tokens. As usual, this allows us to get directly to the heart of the matter without having to
wade through a lot of unnecessary code. Since the major problems in dealing with multiple types occur in the
arithmetic operations, that's where we'll concentrate our focus.

A few words of warning: First, there are some types that I will NOT be covering in this installment. Here we
will ONLY be talking about the simple, predefined types. We won't even deal with arrays, pointers or strings
in this installment; I'll be covering them in the next few.

Second, we also will not discuss user-defined types. That will not come until much later, for the simple
reason that I still haven't convinced myself that user-defined types belong in a language named KISS. In
later installments, I do intend to cover at least the general concepts of user-defined types, records, etc., just
so that the series will be complete. But whether or not they will be included as part of KISS is still an open
issue. I am open to comments or suggestions on this question.

Finally, I should warn you: what we are about to do CAN add considerable extra complication to both the
parser and the generated code. Handling variables of different types is straightforward enough. The
complexity comes in when you add rules about conversion between types. In general, you can make the
compiler as simple or as complex as you choose to make it, depending upon the way you define the type-
conversion rules. Even if you decide not to allow ANY type conversions (as in Ada, for example) the problem is
still there, and is built into the mathematics. When you multiply two short numbers, for example, you can get
a long result.

I've approached this problem very carefully, in an attempt to Keep It Simple. But we can't avoid the
complexity entirely. As has so often has happened, we end up having to trade code quality against complexity,
and as usual I will tend to opt for the simplest approach.

WHAT'S COMING NEXT?
Before diving into the tutorial, I think you'd like to know where we are going from here ... especially since it's
been so long since the last installment.

I have not been idle in the meantime. What I've been doing is reorganizing the compiler itself into Turbo
Units. One of the problems I've encountered is that as we've covered new areas and thereby added features to
the TINY compiler, it's been getting longer and longer. I realized a couple of installments back that this was
causing trouble, and that's why I've gone back to using only compiler fragments for the last installment and
this one. The problem is that it just seems dumb to have to reproduce the code for, say, processing boolean
exclusive OR's, when the subject of the discussion is parameter passing.

The obvious way to have our cake and eat it, too, is to break up the compiler into separately compilable
modules, and of course the Turbo Unit is an ideal vehicle for doing this.
**(remember, this is a translation of Turbo Pascal into C, I'll just use C headers, functions and #include
statements).
This allows us to hide some fairly complex code (such as the full arithmetic and boolean expression parsing)
into a single unit, and just pull it in whenever it's needed. In that way, the only code I'll have to reproduce in
these installments will be the code that actually relates to the issue under discussion.

I've also been toying with Turbo 5.5, which of course includes the Borland object-oriented extensions to
Pascal. I haven't decided whether to make use of these features, for two reasons. First of all, many of you
who have been following this series may still not have 5.5, and I certainly don't want to force anyone to have to
go out and buy a new compiler just to complete the series. Secondly, I'm not convinced that the O-O
extensions have all that much value for this application. We've been having some discussions about that in
CompuServe's CLM forum, and so far we've not found any compelling reason to use O-O constructs. This
is another of those areas where I could use some feedback from you readers. Anyone want to vote for Turbo
5.5 and O-O? .

In any case, after the next few installments in the series, the plan is to upload to you a complete set of Units,
and complete functioning compilers as well. The plan, in fact, is to have THREE compilers: One for a
single-character version of TINY (to use for our experiments), one for TINY and one for KISS. I've pretty
much isolated the differences between TINY and KISS, which are these:

 o TINY will support only two data types: The character and the 16-bit integer. I may also try
 to do something with strings, since without them a compiler would be pretty useless.
 KISS will support all the usual simple types, including arrays and even floating point.

 o TINY will only have two control constructs, the IF and the WHILE. KISS will support a very
 rich set of constructs, including one we haven't discussed here before ... the CASE.

 o KISS will support separately compilable modules.

One caveat: Since I still don't know much about 80x86 assembler language, all these compiler modules will
still be written to support 68000 code. However, for the programs I plan to upload, all the code generation
has been carefully encapsulated into a single unit, so that any enterprising student should be able to easily
retarget to any other processor. This task is "left as an exercise for the student." I'll make an offer right here
and now: For the person who provides us the first robust retarget to 80x86, I will be happy to discuss shared
copyrights and royalties from the book that's upcoming.

But enough talk. Let's get on with the study of types. As I said earlier, we'll do this one as we did in
the last installment: by performing experiments using single-character tokens.

THE SYMBOL TABLE
It should be apparent that, if we're going to deal with variables of different types, we're going to need someplace
to record what those types are. The obvious vehicle for that is the symbol table, and we've already used it
that way to distinguish, for example, between local and global variables, and between variables and
procedures.

The symbol table structure for single-character tokens is particularly simple, and we've used it several
times before. To deal with it, we'll steal some procedures that we've used before.

**Begin with file: Cradle14.c

First, we need to declare the symbol table itself:**

 char Look; /* look ahead character */
 char ST[26];
 char LvarTyp; /* global: LeftVarType */

Next, we need to make sure it's initialized as part of procedure Init:**

void Init() /* Initialize */
{ int i;

 _GetChar();
 SkipWhite();
 for(i=0; i<26; i++)
 { ST[i] = '?';
 }
}
/*-------------------------------*/

We don't really need the next procedure, but it will be helpful for debugging. All it does is to dump the contents
of the symbol table:**

**Add to Prototypes:
 void DumpTable(void);

void DumpTable() /* Dump the Symbol Table */
{ int i;

 for(i=0; i<26; i++)
 { printf("%c\t%c\n", i+'A', ST[i]);
 }
}
/*-------------------------------*/

It really doesn't matter much where you put this procedure ... I plan to cluster all the symbol table routines
together, so I put mine just after the error reporting procedures.

If you're the cautious type (as I am), you might want to begin with a test program that does nothing but
initializes, then dumps the table. Just to be sure that we're all on the same wavelength here, I'm reproducing the
entire program below, complete with the new procedures. Note that this version includes support for white
space:**

void main() /* Main Program */
{
 Init();
 DumpTable();
}
/*-------------------------------*/

OK, run this program. You should get a (very fast) printout of all the letters of the alphabet (potential
identifiers), each followed by a question mark. Not very exciting, but it's a start.

Of course, in general we only want to see the types of the variables that have been defined. We can
eliminate the others by modifying DumpTable with an IF test. Change the loop to read:**

void DumpTable() /* Dump the Symbol Table */
{ int i;

 for(i=0; i<26; i++)
 { if(ST[i] != '?')
 { printf("%c\t%c\n", i+'A', ST[i]);
 }
 }
}
/*-------------------------------*/

Now, run the program again. What did you get?

Well, that's even more boring than before! There was no output at all, since at this point NONE of the names
have been declared. We can spice things up a bit by inserting some statements declaring some entries in
the main program. Try these:**

 ST[('A' - 65)] = 'a';
 ST[('P' - 65)] = 'b';
 ST[('X' - 65)] = 'c';

void main() /* Main Program */
{
 Init();
 ST[('A' - 65)] = 'a';
 ST[('P' - 65)] = 'b';
 ST[('X' - 65)] = 'c';
 DumpTable();

}
/*-------------------------------*/

This time, when you run the program, you should get an output showing that the symbol table is working right.

ADDING ENTRIES
Of course, writing to the table directly is pretty poor practice, and not one that will help us much later. What
we need is a procedure to add entries to the table. At the same time, we know that we're going to need to test
the table, to make sure that we aren't redeclaring a variable that's already in use (easy to do with only 26
choices!). To handle all this, enter the following new procedures:**

**Add to Prototypes:
 void CheckDup(char); char TypeOf(char);
 int InTable(char); void AddEntry(char,char);

char TypeOf(char Name) /* Get Type of Symbol */
{ char Typ;
 int ndx;

 ndx = GetNdx(Name);
 Typ = ST[ndx];
 return Typ;
}/*-------------------------------*/

int InTable(char Name) /* Look for Symbol in Table */
{ int rval=0, ndx;

 ndx = GetNdx(Name);
 if(ST[ndx] != '?')
 { rval = 1;
 }
 return rval;
}

/*-------------------------------*/

void CheckDup(char Name) /* Check for a Duplicate Variable Name */
{ char a_string[20];

 if(InTable(Name))
 { strcpy(a_string, "Duplicate Name: ");
 a_string[16] = Name;
 _Abort(a_string);
 }
}
/*-------------------------------*/

void AddEntry(char Name, char T) /* Add Entry to Table */
{ int ndx;

 CheckDup(Name);
 ndx = GetNdx(Name);
 ST[ndx] = T;
}
/*-------------------------------*/

Now change the three lines in the main program to read:**

 AddEntry('A', 'a');
 AddEntry('P', 'b');
 AddEntry('X', 'c');

void main() /* Main Program */
{
 Init();
 AddEntry('A', 'a');
 AddEntry('P', 'b');
 AddEntry('X', 'c');
 DumpTable();
}
/*-------------------------------*/

and run the program again. Did it work? Then we have the symbol table routines needed to support our work
on types. In the next section, we'll actually begin to use them.

ALLOCATING STORAGE
In other programs like this one, including the TINY compiler itself, we have already addressed the issue of
declaring global variables, and the code generated for them. Let's build a vestigial version of a "compiler"
here, whose only function is to allow us declare variables. Remember, the syntax for a declaration is:**

 <data decl> = VAR <identifier>

Again, we can lift a lot of the code from previous programs. The following are stripped-down versions of those
procedures. They are greatly simplified since I have eliminated niceties like variable lists and initializers. In
procedure Alloc, note that the new call to AddEntry will also take care of checking for duplicate
declarations:**

**Add to Prototypes:
 void Alloc(char); void Decl(void);
 void TopDecls(void);

void Alloc(char Name) /* Allocate Storage for a Variable */
{
 AddEntry(Name, 'v');
 printf("%c\tDW 0\n", Name);
}
/*-------------------------------*/

void Decl() /* Parse and Translate a Data Declaration */
{ char Name;

 Match('v');
 Name = GetName();
 Alloc(Name);
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{ char a_string[25];

 while(Look != '.')
 { switch(Look)
 { case 'v':
 Decl();
 break;
 default:
 strcpy(a_string, "Unrecognized Keyword ");
 a_string[21] = Look;
 _Abort(a_string);
 break;
 }
 Fin();
 }
}
/*-------------------------------*/

Now, in the main program, add a call to TopDecls and run the program. Try allocating a few variables, and
note the resulting code generated. This is old stuff for you, so the results should look familiar. Note from the
code for TopDecls that the program is ended by a terminating period.

**Try: vavbvc.

While you're at it, try declaring two variables with the same name, and verify that the parser catches the error.

DECLARING TYPES
Allocating storage of different sizes is as easy as modifying procedure TopDecls to recognize more than one
keyword. There are a number of decisions to be made here, in terms of what the syntax should be, etc., but
for now I'm going to duck all the issues and simply declare by executive fiat that our syntax will be:**

 <data decl> = <typename> <identifier>

where:**

 <typename> = BYTE | WORD | DOUBLE

(By an amazing coincidence, the first letters of these names happen to be the same as the **x86
assembly code length specifications, so this choice saves us a little work.)

We can create the code to take care of these declarations with only slight modifications. In the routines below,
note that I've separated the code generation parts of Alloc from the logic parts. This is in keeping with our
desire to encapsulate the machine-dependent part of the compiler.**

**Add changes to Prototypes:
 void AllocVar(char,char);
 void Alloc(char,char);

void AllocVar(char Name, char T) /* Generate Code for Allocation */
{ /*of a Variable */
 printf("%c\tD%c 0\n", Name,T);
}
/*-------------------------------*/

void Alloc(char Name, char T) /* Allocate Storage for a Variable */
{
 AddEntry(Name, T);
 AllocVar(Name, T);
}
/*-------------------------------*/

void Decl() /* Parse and Translate a Data Declaration */
{ char Name, Typ;

 Typ = GetName();
 Name = GetName();
 Alloc(Name,Typ);
}
/*-------------------------------*/

void TopDecls() /* Parse and Translate Global Declarations */
{ char a_string[25];

 while(Look != '.')
 { switch(Look)
 { case 'b': /* byte */
 case 'w': /* word */
 case 'd': /* double */
 Decl();
 break;
 default:
 strcpy(a_string, "Unrecognized Keyword ");

 a_string[21] = Look;
 _Abort(a_string);
 break;
 }
 Fin();
 }
}
/*-------------------------------*/

**Make the changes shown to these procedures, and give the thing a try. Use the single characters 'b', 'w'
and 'd' for the keywords (they must be lower case, for now). You will see that in each case, we are allocating
the proper storage size. Note from the dumped symbol table that the sizes are also recorded for later use.
What later use? Well, that's the subject of the rest of this installment.
**Try: bawbdc.

meaning: Byte - A
 Word - B
Double - C

ASSIGNMENTS
Now that we can declare variables of different sizes, it stands to reason that we ought to be able to do
something with them. For our first trick, let's just try loading them into our working register, **AX. It makes
sense to use the same idea we used for Alloc; that is, make a load procedure that can load more than one
size. We also want to continue to encapsulate the machine-dependent stuff. The load procedure looks like
this:**

**Add to Prototypes:
 void LoadVar(char,char); void Move(char,char *,char *);
 int IsVarType(char); char VarType(char);
 void Load(char);

void LoadVar(char Name, char Typ) /*Load a Variable to Primary */
{ char Namestr[5] = {0,0}; /* Register */
 char a_string[20];

 Namestr[0] = Name;
 if(Typ == 'B')
 { Move(Typ,Namestr,"al");
 }
 else if(Typ == 'W')
 { Move(Typ,Namestr,"ax");
 }
 else
 { strcpy(a_string, "word ptr ");
 strcat(a_string, Namestr);
 Move(Typ,a_string,"ax");
 strcpy(a_string, "word ptr ");
 strcat(a_string, Namestr);
 strcat(a_string, "+2");
 Move(Typ,a_string,"dx");
 }
}
/*-------------------------------*/

On the **x86, at least, it happens that many instructions turn out to be **MOV's. It turns out to be useful to

create a separate code generator just for these instructions, and then call it as needed:**

void Move(char Size,char *Source,char *Dest)
{ char a_string[30]; /* Generate a Move Instruction */

 strcpy(a_string, "mov ");
 strcat(a_string, Dest);
 strcat(a_string, ", ");
 strcat(a_string, Source);
 EmitLn(a_string);
}
/*-------------------------------*/

Note that these two routines are strictly code generators; they have no error-checking or other logic. To
complete the picture, we need one more layer of software that provides these functions.

First of all, we need to make sure that the type we are dealing with is a loadable type. This sounds like a
job for another recognizer:**

int IsVarType(char ch) /* Recognize a Legal Variable Type */
{ int rval=0;

 if(strchr("BWD", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

Next, it would be nice to have a routine that will fetch the type of a variable from the symbol table, while
checking it to make sure it's valid:**

char VarType(char Name) /* Get a Variable Type from the Symbol Table */
{ char Typ, a_string[35];

 Typ = TypeOf(Name);
 if(! IsVarType(Typ))
 { strcpy(a_string, "Identifier \' \' is not a variable");
 a_string[12] = Name;
 _Abort(a_string);
 }
 return Typ;
}
/*-------------------------------*/

Armed with these tools, a procedure to cause a variable to be loaded becomes trivial:**

void Load(char Name) /* Load a Variable to the Primary Register */
{ char Typ;

 Typ = VarType(Name);
 LoadVar(Name, Typ);

}
/*-------------------------------*/

(NOTE to the concerned: I know, I know, all this is all very inefficient. In a production program, we
probably would take steps to avoid such deep nesting of procedure calls. Don't worry about it. This is an
EXERCISE, remember? It's more important to get it right and understand it, than it is to make it get the
wrong answer, quickly. If you get your compiler completed and find that you're unhappy with the speed, feel
free to come back and hack the code to speed it up!)

It would be a good idea to test the program at this point. Since we don't have a procedure for dealing with
assignments yet, I just added the lines:**

 Init();
 TopDecls();
 DumpTable();
 Load('A');
 Load('B');
 Load('C');
 Load('X');

to the end of the main program. Thus, after the declaration section is complete, they will be executed to
generate code for the loads. You can play around with this, and try different combinations of declarations to
see how the errors are handled.

I'm sure you won't be surprised to learn that storing variables is a lot like loading them. The necessary
procedures are shown next:**

**Add to Prototypes:
 void StoreVar(char,char); void Store(char);
 void Expression(void); void Assignment(void);
 void Block(void);

void StoreVar(char Name,char Typ) /* Store Primary to Variable */
{ char a_string[20];

 strcpy(a_string, "lea di, ");
 a_string[9] = Name;
 EmitLn(a_string);
 if(Typ == 'B')
 { Move(Typ,"al","[di]");
 }
 else if(Typ == 'W')
 { Move(Typ,"ax","[di]");
 }
 else
 { Move(Typ,"ax","W[di]");
 Move(Typ,"dx","W[di+2]");
 }
}
/*-------------------------------*/

void Store(char Name) /* Store a Variable from the Primary Register */
{ char Typ;

 Typ = VarType(Name);

 StoreVar(Name, Typ);
}
/*-------------------------------*/

You can test this one the same way as the loads.**

 Store('A');
 Store('B');
 Store('C');
 Store('X');

Now, of course, it's a RATHER small step to use these to handle assignment statements. What we'll do is to
create a special version of procedure Block that supports only assignment statements, and also a
special version of Expression that only supports single variables as legal expressions. Here they are:**

void Expression() /* Parse and Translate an Expression */
{ char Name;

 Name = GetName();
 Load(Name);
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{ char Name;

 Name = GetName();
 Match('=');
 Expression();
 Store(Name);
}
/*-------------------------------*/

void Block() /* Parse and Translate a Block of Statements */
{
 while(Look != '.')
 { Assignment();
 Fin();
 }
}
/*-------------------------------*/

(It's worth noting that, if anything, the new procedures that permit us to manipulate types are, if anything,
even simpler and cleaner than what we've seen before. This is mostly thanks to our efforts to encapsulate the
code generator procedures.)

There is one small, nagging problem. Before, we used the Pascal terminating period to get us out of procedure
TopDecls. This is now the wrong character ... it's used to terminate Block. In previous programs, we've
used the BEGIN symbol (abbreviated 'b') to get us out. But that is now used as a type symbol.

The solution, while somewhat of a kludge, is easy enough. We'll use an UPPER CASE 'B' to stand for the
BEGIN. So change the character in the WHILE loop within TopDecls, from '.' to 'B', and everything will be
fine.

** while(Look != 'B')

Now, we can complete the task by changing the main program to read:**

void main() /* Main Program */
{
 Init();
 TopDecls();
 Match('B');
 Fin();
 Block();
 DumpTable();
}
/*-------------------------------*/

(Note that I've had to sprinkle a few calls to Fin around to get us out of Newline troubles.)

OK, run this program. Try the input:

 ba { byte a } *** DON'T TYPE THE COMMENTS!!! ***
 wb { word b }
 wc { word c }
 B { begin }
 a=a
 a=b
 a=c
 b=a
 b=b
 b=c
 c=a
 c=b
 c=c
 .

For each declaration, you should get code generated that allocates storage. For each assignment, you
should get code that loads a variable of the correct size, and stores one, also of the correct size.

There's only one small little problem: The generated code is WRONG!

Look at the code for a=c above. The code is:**

MOV AX, word ptr C
MOV DX, word ptr C+2
LEA DI, A
MOV [DI], AL

This code is correct. It will cause the lower eight bits of C to be stored into A, which is a reasonable behavior.
It's about all we can expect to happen.

But now, look at the opposite case. For c=a, the code generated is:**

MOV AL, A
LEA DI, C
MOV W[DI], AX

MOV W[DI+2], DX

This is NOT correct. It will cause the byte variable A to be stored into the lower eight bits of **AX.
According to the rules for the **x86 processor, the upper 24 bits are unchanged. This means that when we
store the entire 32 bits into C, whatever garbage that was in those high bits will also get stored. Not good.

So what we have run into here, early on, is the issue of TYPE CONVERSION, or COERCION.

Before we do anything with variables of different types, even if it's just to copy them, we have to face up to the
issue. It is not the most easy part of a compiler. Most of the bugs I have seen in production compilers have
had to do with errors in type conversion for some obscure combination of arguments. As usual, there is a
tradeoff between compiler complexity and the potential quality of the generated code, and as usual, we will
take the path that keeps the compiler simple. I think you'll find that, with this approach, we can keep the
potential complexity in check rather nicely.

THE COWARD'S WAY OUT
Before we get into the details (and potential complexity) of type conversion, I'd like you to see that there is one
super-simple way to solve the problem: simply promote every variable to a long integer when we load it!

This takes the addition of only one line to LoadVar, although if we are not going to COMPLETELY ignore
efficiency, it should be guarded by an IF test. Here is the modified version:**

void LoadVar(char Name, char Typ) /* Load a Variable to Primary */
{ char Namestr[5] = {0,0}; /* Register */
 char a_string[20];

 Namestr[0] = Name;
 if(Typ != 'D')
 { EmitLn("mov ax, 0");
 EmitLn("mov dx, 0");
 }
 if(Typ == 'B')
 { Move(Typ,Namestr,"al");
 }
 else if(Typ == 'W')
 { Move(Typ,Namestr,"ax");
 }
 else
 { strcpy(a_string, "word ptr ");
 strcat(a_string, Namestr);
 Move(Typ,a_string,"ax");
 strcpy(a_string, "word ptr ");
 strcat(a_string, Namestr);
 strcat(a_string, "+2");
 Move(Typ,a_string,"dx");
 }
}
/*-------------------------------*/

(Note that StoreVar needs no similar change.)

If you run some tests with this new version, you will find that everything works correctly now, albeit sometimes
inefficiently. For example, consider the case a=b (for the same declarations shown above). Now the
generated code turns out to be:**

MOV AX, 0
MOV DX, 0
MOV AX, B
LEA DI, A
MOV [DI], AL

In this case, the **"MOV DX,0" turns out not to be necessary, since the result is going into a byte-sized
variable. **[snip]

I should point out that, by setting the high bits to zero, we are in effect treating the numbers as UNSIGNED
integers. If we want to treat them as signed ones instead (the more likely case) we should do a sign
extension after the load, instead of a clear before it. **[snip]

A MORE REASONABLE SOLUTION
As we've seen, promoting every variable to long while it's in memory solves the problem, but it can hardly be
called efficient, and probably wouldn't be acceptable even for those of us who claim be unconcerned about
efficiency. It will mean that all arithmetic operations will be done to 32-bit accuracy, which will DOUBLE the
run time for most operations, and make it even worse for multiplication and division. For those operations, we
would need to call subroutines to do them, even if the data were byte or word types. The whole thing is sort of
a cop-out, too, since it ducks all the real issues.

OK, so that solution's no good. Is there still a relatively easy way to get data conversion? Can we still Keep It
Simple?

Yes, indeed. All we have to do is to make the conversion at the other end ... that is, we convert on the way
OUT, when the data is stored, rather than on the way in.

But, remember, the storage part of the assignment is pretty much independent of the data load, which is taken
care of by procedure Expression. In general the expression may be arbitrarily complex, so how can
procedure Assignment know what type of data is left in register **AX ?

Again, the answer is simple: We'll just _ASK_ procedure Expression! The answer can be returned as a
function value.

All of this requires several procedures to be modified, but the mods, like the method, are quite simple. First of
all, since we aren't requiring LoadVar to do all the work of conversion, let's go back to the simple version:**

**Add changes to Prototypes:
 void Convert(char,char); char Expression(void);
 char Load(char);

void LoadVar(char Name, char Typ) /* Load a Variable to Primary */
{ char Namestr[5] = {0,0}; /* Register */
 char a_string[20];

 Namestr[0] = Name;
 if(Typ == 'B')
 { Clear("ax");
 Move(Typ,Namestr,"al");
 if(LvarTyp == 'D')
 { Clear("dx");
 }
 }
 else if(Typ == 'W')
 { Move(Typ,Namestr,"ax");

 if(LvarTyp == 'D')
 { Clear("dx");
 }
 }
 else
 { strcpy(a_string, "word ptr ");
 strcat(a_string, Namestr);
 Move(Typ,a_string,"ax");
 strcpy(a_string, "word ptr ");
 strcat(a_string, Namestr);
 strcat(a_string, "+2");
 Move(Typ,a_string,"dx");
 }
}
/*-------------------------------*/

Next, let's add a new procedure that will convert from one type to another:**

void Convert(char Source, char Dest) /* Convert a Data Item from One */
{ /* Type to Another */
 if(Source != Dest)
 { if(Source == 'B')
 { EmitLn("and ax, 0FFH");
 if(Dest == 'D')
 { EmitLn("mov dx, 0");
 }
 }
 else if(Source == 'W')
 { if(Dest == 'D')
 { EmitLn("mov dx, 0");
 }
 }
 }
}
/*-------------------------------*/

Next, we need to do the logic required to load and store a variable of any type. Here are the routines for
that:**

char Load(char Name) /* Load a Variable to the Primary Register */
{ char Typ;

 Typ = VarType(Name);
 LoadVar(Name, Typ);
 return Typ;
}
/*-------------------------------*/

void Store(char Name,char T1) /* Store a Variable from the */
{ /* Primary Register */
 StoreVar(Name, LvarTyp);
}
/*-------------------------------*/

Note that Load is a function, which not only emits the code for a load, but also returns the variable type. In this

way, we always know what type of data we are dealing with. When we execute a Store, we pass it the
current type of the variable in **AX. Since Store also knows the type of the destination variable, it can
convert as necessary.

Armed with all these new routines, the implementation of our rudimentary assignment statement is
essentially trivial. Procedure Expression now becomes a function, which returns its type to procedure
Assignment:**

char Expression() /* Parse and Translate an Expression */
{ char Name, Typ;

 Name = GetName();
 Typ = Load(Name);
 return Typ;
}
/*-------------------------------*/

void Assignment() /* Parse and Translate an Assignment Statement */
{ char Name, Typ;

 Name = GetName();
 LvarTyp = TypeOf(Name); /* save Left-Var type */
 Match('=');
 Typ = Expression();
 Store(Name,Typ);
}
/*-------------------------------*/

Again, note how incredibly simple these two routines are. We've encapsulated all the type logic into Load and
Store, and the trick of passing the type around makes the rest of the work extremely easy. Of course,
all of this is for our special, trivial case of Expression. Naturally, for the general case it will have to get more
complex. But you're looking now at the FINAL version of procedure Assignment!

All this seems like a very simple and clean solution, and it is indeed. Compile this program and run the same
test cases as before. You will see that all types of data are converted properly, and there are few if any
wasted instructions. Only the byte-to-long conversion uses two instructions where one would do, and we could
easily modify Convert to handle this case, too.

Although we haven't considered unsigned variables in this case, I think you can see that we could easily fix up
procedure Convert to deal with these types as well. This is "left as an exercise for the student."

LITERAL ARGUMENTS
Sharp-eyed readers might have noticed, though, that we don't even have a proper form of a simple factor yet,
because we don't allow for loading literal constants, only variables. Let's fix that now.

To begin with, we'll need a GetNum function. We've seen several versions of this, some returning only a single
character, some a string, and some an integer. The one needed here will return a LongInt, so that it can
handle anything we throw at it. Note that no type information is returned here: GetNum doesn't concern itself
with how the number will be used:**

**Add changes to Prototypes:
 long GetNum(void); char LoadNum(long);
 void LoadConst(long,char);

long GetNum() /* Get a Number */
{ long Val=0;
 int x;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { x = Look - '0';
 Val = 10 * Val + x;
 _GetChar();
 }
 SkipWhite();
 return Val;
}
/*-------------------------------*/

Now, when dealing with literal data, we have one little small problem. With variables, we know what type
things should be because they've been declared to be that type. We have no such type information for
literals. When the programmer says, "-1," does that mean a byte, word, or longword version? We have no
clue. The obvious thing to do would be to use the largest type possible, i.e. a longword. But that's a bad
idea, because when we get to more complex expressions, we'll find that it will cause every expression involving
literals to be promoted to long, as well.

A better approach is to select a type based upon the value of the literal, as shown next:**

char LoadNum(long Num) /* Load a Constant to the Primary Register */
{ char Typ;

 if(abs(Num) <= 127)
 { Typ = 'B';
 }
 else if(abs(Num) <= 32767)
 { Typ = 'W';
 }
 else
 { Typ = 'D';
 }
 LoadConst(Num, Typ);
 return Typ;
}
/*-------------------------------*/

(I know, I know, the number base isn't really symmetric. You can store -128 in a single byte, and -32768 in a
word. But that's easily fixed, and not worth the time or the added complexity to fool with it here. It's the
thought that counts.)

Note that LoadNum calls a new version of the code generator routine LoadConst, which has an added
argument to define the type:**

void LoadConst(long Num,char Typ) /* Load a Constant to the Primary */
{ int mask1=16384, DX=0; /* Register(s) */
 long base=1073741824;
 unsigned AX=0;

 char temp[12];

 if(Typ == 'B')
 { sprintf(temp, "%Ld", Num);
 Clear("ax");
 Move(Typ,temp,"al");
 if(LvarTyp == 'D')
 { Clear("dx");
 }
 }
 else if(Typ == 'W')
 { sprintf(temp, "%Ld", Num);
 Move(Typ,temp,"ax");
 if(LvarTyp == 'D')
 { Clear("dx");
 }
 }
 else
 { while(base >= 65536) /* while the upper 16 bits */
 { if(Num >= base) /* test current bit value */
 { DX = DX + mask1; /* add the bit value to DX */
 Num = Num - base;
 base = base/2; /* step down to next bit */
 mask1 = mask1/2; /* next lower bit value */
 }
 else
 { base = base/2; /* step down to next bit */
 mask1 = mask1/2; /* next lower bit value */
 }
 }
 AX = Num; /* assign AX the remaining 16 bits */
 sprintf(temp, "%u", AX);
 Move(Typ,temp,"ax");
 sprintf(temp, "%d", DX);
 Move(Typ,temp,"dx");
 }
}
/*-------------------------------*/

**Note: since the standard 8086/8088 registers are only 16-bits wide (as opposed to the 68000's 32-bits), the
above LoadConst code was significantly modified, where it pertains to loading the Double Word or Long type of
data into the AX and DX registers. The procedure separates the upper 16 bits and loads them into the DX
register and the remaining lower 16 bits into the AX register. A presumption is made here that the largest value
for a Long Integer (double word) will be a signed 2,147,483,647.

Now we can modify procedure Expression to accomodate the two possible kinds of factors:**

char Expression() /* Parse and Translate an Expression */
{ char Name, Typ;
 long Num;

 if(isalpha(Look))
 { Name = GetName();
 Typ = Load(Name);
 }
 else
 { Num = GetNum();

 Typ = LoadNum(Num);
 }
 return Typ;
}
/*-------------------------------*/

(Wow, that sure didn't hurt too bad! Just a few extra lines do the job.)

OK, compile this code into your program and give it a try. You'll see that it now works for either variables or
constants as valid expressions.

ADDITIVE EXPRESSIONS
If you've been following this series from the beginning, I'm sure you know what's coming next: We'll expand
the form for an expression to handle first additive expressions, then multiplicative, then general
expressions with parentheses.

The nice part is that we already have a pattern for dealing with these more complex expressions. All we have
to do is to make sure that all the procedures called by Expression (Term, Factor, etc.) always return a type
identifier. If we do that, the program structure gets changed hardly at all.

The first step is easy: We can rename our existing function Expression to Term, as we've done so
many times before, and create the new version of Expression:**

**Add changes to Prototypes:
 char Term(void); char Expression(void);
 char Unop(void); char Add(char);
 char Subtract(char); void Pop(char);
 void Convert(char,char,char);
 char Promote(char,char,char);
 char SameType(char,char); char PopAdd(char,char);
 char PopSub(char,char); void GenAdd(char);
 void GenSub(char); void Clear(char *);
 void Push(char);

char Expression() /* Parse and Translate an Expression */
{ char Typ;

 if(IsAddop(Look))
 { Typ = Unop();
 }
 else
 { Typ = Term();
 }
 while(IsAddop(Look))
 { Push(Typ);
 switch(Look)
 { case '+':
 Typ = Add(Typ);
 break;
 case '-':
 Typ = Subtract(Typ);
 break;
 default:
 break;
 }

 }
 return Typ;
}
/*-------------------------------*/

Note in this routine how each procedure call has become a function call, and how the local variable Typ
gets updated at each pass.

Note also the new call to a function Unop, which lets us deal with a leading unary minus. This change is not
necessary ... we could still use a form more like what we've done before. I've chosen to introduce UnOp as
a separate routine because it will make it easier, later, to produce somewhat better code than we've been
doing. In other words, I'm looking ahead to optimization issues.

For this version, though, we'll retain the same dumb old code, which makes the new routine trivial:**

char Unop() /* Process a Term with Leading Unary Operator */
{ char Typ;

 Clear("ax");
 Typ = 'W';
 if(LvarTyp == 'D')
 { Clear("dx");
 Typ = 'D';
 }
 return Typ;
}
/*-------------------------------*/

Procedure Push is a code-generator routine, and now has a type argument:**

void Push(char Size) /* Push Primary onto Stack */
{
 if(Size != 'D')
 { if(LvarTyp == 'D')
 { EmitLn("push dx"); /* high word */
 }
 EmitLn("push ax");
 }
 else
 { EmitLn("push dx"); /* high word */
 EmitLn("push ax"); /* low word */
 }
}
/*-------------------------------*/

Now, let's take a look at functions Add and Subtract. In the older versions of these routines, we let them call
code generator routines PopAdd and PopSub. We'll continue to do that, which makes the functions
themselves extremely simple:**

char Add(char T1) /* Recognize and Translate an Add */
{ char Typ, T2;

 Match('+');
 T2 = Term();

 Typ = PopAdd(T1, T2);
 return Typ;
}
/*-------------------------------*/

char Subtract(char T1) /* Recognize and Translate a Subtract */
{ char Typ, T2;

 Match('-');
 T2 = Term();
 Typ = PopSub(T1, T2);
 return Typ;
}
/*-------------------------------*/

The simplicity is deceptive, though, because what we've done is to defer all the logic to PopAdd and PopSub,
which are no longer just code generation routines. They must also now take care of the type conversions
required.

And just what conversion is that? Simple: Both arguments must be of the same size, and the result is also of
that size. The smaller of the two arguments must be "promoted" to the size of the larger one.

But this presents a bit of a problem. If the argument to be promoted is the second argument (i.e. in the
primary register AX), we are in great shape. If it's not, however, we're in a fix: we can't change the size of the
information that's already been pushed onto the stack.

The solution is simple but a little painful:
The first step in this new structure is to introduce a Pop procedure analogous to the Push. This procedure
will always Pop the top element of the stack into CX:**

void Pop(char Size) /* Pop Stack into Secondary Register */
{
 if(Size != 'D')
 { EmitLn("pop bx");
 if(LvarTyp == 'D')
 { EmitLn("pop cx"); /* high word */
 }
 }
 else
 { EmitLn("pop bx"); /* low word */
 EmitLn("pop cx"); /* high word */
 }
}
/*-------------------------------*/

The general idea is that all the "Pop-Op" routines can call this one. When this is done, we will then have
both operands in registers, so we can promote whichever one we need to. To deal with this, procedure
Convert needs another argument.**

void Convert(char Source,char Dest,char Reg) /* Convert a Data Item */
{ /* from One Type to Another */
 if(LvarTyp == 'D')
 { if(Source != Dest)
 { if(strchr("BW", Source))

 { if((Dest == 'D') && (Reg == 'T'))
 { Clear("cx");
 }
 if((Dest == 'D') && (Reg == 'F'))
 { Clear("dx");
 }
 }
 }
 }
}
/*-------------------------------*/

The next function does a conversion, but only if the current type T1 is smaller in size than the desired type
T2. It is a function, returning the final type to let us know what it decided to do:**

char Promote(char T1,char T2,char Reg) /* Promote the Size of a */
{ char Typ; /* Register Value */

 Typ = T1;
 if(T1 != T2)
 { if(strchr("BW", T1))
 { if(T2 == 'D')
 { Convert(T1, T2, Reg);
 Typ = T2;
 }
 }
 }
 return Typ;
}
/*-------------------------------*/

Finally, the following function forces the two registers to be of the same type:**

char SameType(char T1,char T2) /* Force both Arguments to Same Type */
{ char Typ;

 T1 = Promote(T1, T2, ' ');
 Typ = Promote(T2, T1, ' ');
 return Typ;
}
/*-------------------------------*/

These new routines give us the ammunition we need to flesh out PopAdd and PopSub:**

char PopAdd(char T1,char T2) /*Generate Code to Add Primary to */
{ /* the Stack */
 Pop(T1);
 T2 = SameType(T1, T2);
 GenAdd(T2);
 return T2;
}
/*-------------------------------*/

char PopSub(char T1,char T2) /* Generate Code to Subtract Primary */
{ /* from the Stack */
 Pop(T1);
 T2 = SameType(T1, T2);
 GenSub(T2);
 return T2;
}
/*-------------------------------*/

After all the buildup, the final results are almost anticlimactic. Once again, you can see that the logic
is quite simple. All the two routines do is to pop the top-of-stack into CX, force the two operands to be the
same size, and then generate the code.

Note the new code generator routines GenAdd and GenSub. These are vestigial forms of the ORIGINAL
PopAdd and PopSub. That is, they are pure code generators, producing a register-to-register add or
subtract:**

void GenAdd(char Size) /* Add Top of Stack to Primary */
{
 if(LvarTyp == 'D')
 { EmitLn("add ax, bx");
 EmitLn("adc dx, cx");
 }
 else
 { EmitLn("add ax, bx");
 }
}
/*-------------------------------*/

void GenSub(char Size) /* Subtract Primary from Top of Stack */
{
 if(LvarTyp == 'D')
 { EmitLn("xchg ax, bx");
 EmitLn("xchg dx, cx");
 EmitLn("sub ax, bx");
 EmitLn("sbb dx, cx");
 }
 else
 { EmitLn("xchg ax, bx");
 EmitLn("sub ax, bx");
 }
}
/*-------------------------------*/

void Clear(char *Reg) /* Clear the Primary Register */
{ char a_string[12];

 strcpy(a_string, "mov ");
 strcat(a_string, Reg);
 strcat(a_string, ", 0");
 EmitLn(a_string);
}
/*-------------------------------*/

OK, I grant you: I've thrown a lot of routines at you since we last tested the code. But you have to admit
that each new routine is pretty simple and transparent. If you (like me) don't like to test so many new routines
at once, that's OK. You can stub out routines like Convert, Promote, and SameType, since they don't read
any inputs. You won't get the correct code, of course, but things should work. Then flesh them out one at
a time.

When testing the program, don't forget that you first have to declare some variables, and then start the
"body" of the program with an upper-case 'B' (for BEGIN). **

bawbdcB<cr>

You should find that the parser will handle any additive expressions. **

a=100 <cr> a=32000 <cr> a=66000 <cr>
a=a <cr> b=b <cr> c=c <cr>
a=a+a <cr> b=b+b <cr> c=c+c <cr>

Once all the conversion routines are in, you should see that the correct code is generated, with type
conversions inserted where necessary. Try mixing up variables of different sizes, and also literals. Make sure
that everything's working properly. **

a=b <cr> a=c <cr> b=a <cr> b=c <cr> c=a <cr> c=b <cr>
a=a+b+c <cr> b=a+b+c <cr> c=a+b+c <cr>

As usual, it's a good idea to try some erroneous expressions and see how the compiler handles them.

WHY SO MANY PROCEDURES?
At this point, you may think I've pretty much gone off the deep end in terms of deeply nested procedures.
There is admittedly a lot of overhead here. But there's a method in my madness. As in the case of UnOp, I'm
looking ahead to the time when we're going to want better code generation. The way the code is organized,
we can achieve this without major modifications to the program. For example, in cases where the value pushed
onto the stack does _NOT_ have to be converted, it's still better to use the "pop and add" instruction. If we
choose to test for such cases, we can embed the extra tests into PopAdd and PopSub without changing
anything else much.

MULTIPLICATIVE EXPRESSIONS
The procedure for dealing with multiplicative operators is much the same. In fact, at the first level, they
are almost identical, so I'll just show them here without much fanfare. The first one is our general form for
Factor, which includes parenthetical subexpressions:**

**Add to Prototypes:
 char Factor(void); char Multiply(char);
 char Divide(char);

char Factor() /* Parse and Translate a Factor */
{ char Typ, Name;
 long Num;

 if(Look == '(')
 { Match('(');
 Typ = Expression();
 Match(')');

 }
 else if(isalpha(Look))
 { Name = GetName();
 Typ = Load(Name);
 }
 else
 { Num = GetNum();
 Typ = LoadNum(Num);
 }
 return Typ;
}
/*-------------------------------*/

char Multiply(char T1) /* Recognize and Translate a Multiply */
{ char Typ, T2;

 Match('*');
 T2 = Factor();
 Typ = PopMul(T1, T2);
 return Typ;
}
/*-------------------------------*/

char Divide(char T1) /* Recognize and Translate a Divide */
{ char Typ, T2;

 Match('/');
 T2 = Factor();
 Typ = PopDiv(T1, T2);
 return Typ;
}
/*-------------------------------*/

char Term() /* Parse and Translate an Expression */
{ char Typ;

 Typ = Factor();
 while(IsMulop(Look))
 { Push(Typ);
 switch(Look)
 { case '*':
 Typ = Multiply(Typ);
 break;
 case '/':
 Typ = Divide(Typ);
 break;
 default:
 break;
 }
 }
 return Typ;
}
/*-------------------------------*/

These routines parallel the additive ones almost exactly. As before, the complexity is encapsulated within

PopMul and PopDiv. If you'd like to test the program before we get into that, you can build dummy versions of
them, similar to PopAdd and PopSub. Again, the code won't be correct at this point, but the parser should
handle expressions of arbitrary complexity.**

**Add to Prototypes:
 char PopMul(char,char); char PopDiv(char,char);
 void GenMult(char); void GenDiv(char);

char PopDiv(char T1,char T2) /* Generate Code to Divide Primary */
{ /* from the Stack */
 Pop(T1);
 T2 = SameType(T1, T2);
 GenDiv(T2);
 return T2;
}
/*-------------------------------*/

char PopMul(char T1,char T2) /* Generate Code to Multiply Primary */
{ /* to the Stack */
 Pop(T1);
 T2 = SameType(T1, T2);
 GenMul(T2);
 return T2;
}
/*-------------------------------*/

void GenDiv(char Size) /* Divide Primary by Top of Stack */
{
 EmitLn("xchg ax, bx");
 EmitLn("div bx");
}
/*-------------------------------*/

void GenMult(char Size) /* Multiply Top of Stack by Primary */
{
 EmitLn("mul bx");
}
/*-------------------------------*/

MULTIPLICATION
Once you've convinced yourself that the parser itself is working properly, we need to figure out what it will take
to generate the right code. This is where things begin to get a little sticky, because the rules are more
complex.

Let's take the case of multiplication first. This operation is similar to the "addops" in that both operands should
be of the same size. It differs in two important respects:

 o The type of the product is typically not the same as that of the two operands. For the product
 of two words, we get a longword result.

 o The x86 does not support a 32 x 32 multiply, so a call to a software routine is needed. This
 routine will become part of the run-time library.

The actions that we have to take are best shown in the following table:**

 AX --> row
 BX x column
 |
 V

 T1 --> | | | |
 T2 | | | |
 | | B | W | D |
 V | | | |

 | | | |
 B | | | |
 | | Convert BL to W | Convert BL to D |
 | MUL | MUL | Call MUL32 |
 | Result = W | Result = D | Result = D |
 | | | |

 | | | |
 W | Convert AL to W | | Convert BX to D |
 | MUL | MUL | Call MUL32 |
 | Result = D | Result = D | Result = D |
 | | | |

 | | | |
 D | Convert AL to D | Convert AX to D | |
 | CALL MUL32 | CALL MUL32 | CALL MUL32 |
 | Result = D | Result = D | Result = D |
 | | | |

This table shows the actions to be taken for each combination of operand types. First, we assume a library
routine MUL32 which performs a 32 x 32 multiply, leaving a >> 32-bit << (not 64-bit) product. If there is
any overflow in the process, we choose to ignore it and return only the lower 32 bits. **[snip]

Now, clearly, we are going to have to generate different code for the 16-bit and 32-bit multiplies. This is best
done by having separate code generator routines for the two cases:**

**Add changes to Prototypes:
 void GenMult(char); void GenLongMult(void);
 void PopM(char,char); char SameTypeM(char,char);
 char PromoteM(char,char);

void GenMult(char Typ) /* Multiply Top of Stack by Primary (Word) */
{
 if(Typ == 'B')
 { EmitLn("xchg ax, bx");
 EmitLn("mul bl");
 }
 else
 { EmitLn("xchg ax, bx");
 EmitLn("xchg dx, cx");
 EmitLn("mul bx");
 }

}
/*-------------------------------*/

void GenLongMult() /* Multiply Top of Stack by Primary (Long) */
{
 EmitLn("xchg ax, bx");
 EmitLn("xchg dx, cx");
 EmitLn("call MUL32");
}
/*-------------------------------*/

An examination of the code below for PopMul should convince you that the conditions in the table are met:**

char PopMul(char T1,char T2) /* Generate Code to Multiply Primary */
{ char T, Typ; /* by Stack */

 PopM(T1,T2);
 T = SameTypeM(T1, T2);
 if(strchr("BW", T))
 { GenMult(T);
 }
 else
 { GenLongMult();
 }
 if(T == 'B')
 { Typ = 'W';
 }
 else
 { Typ = 'D';
 }
 return Typ;
}
/*-------------------------------*/

**Note: the original Pop function used for the AdOps doesn't really work in the case of multiplication, as other
registers are affected, so I have provided a modified version here that works with the x86. The same goes for
functions SameType and Promote. Function Convert is omitted entirely. **

void PopM(char T1,char T2) /* Pop Stack into Secondary Register */
{
 EmitLn("pop bx");
 if(T2 == 'B')
 { if(LvarTyp == 'D')
 { EmitLn("pop cx");
 }
 else if(T1 == 'W')
 { Clear("cx");
 Clear("dx");
 }
 else if(T1 == 'D')
 { EmitLn("pop cx");
 Clear("dx");
 }
 }

 else if(T2 == 'W')
 { if(LvarTyp != 'D')
 { if(strchr("BW", T1))
 { Clear("cx");
 Clear("dx");
 }
 else
 { EmitLn("pop cx");
 Clear("dx");
 }
 }
 else
 { EmitLn("pop cx");
 }
 }
 else
 { if(LvarTyp == 'D')
 { EmitLn("pop cx");
 }
 else if(T1 != 'D')
 { Clear("cx");
 }
 else
 { EmitLn("pop cx");
 }
 }
}
/*-------------------------------*/

char SameTypeM(char T1,char T2) /* Force both Arguments to Same Type */
{ char Typ;

 Typ = PromoteM(T1, T2);
 return Typ;
}
/*-------------------------------*/

char PromoteM(char T1,char T2) /* Promote the Size of a */
{ char Typ; /* Register Value */

 Typ = T2;
 if(T1 != T2)
 { if(T2 == 'B')
 { Typ = T1;
 }
 else if(T2 == 'W')
 { Typ = 'W';
 if(T1 == 'D')
 { Typ = 'D';
 }
 }
 else
 { Typ = 'D';
 }
 }
 return Typ;
}

/*-------------------------------*/

As you can see, the routine starts off just like PopAdd. The two arguments are forced to the same type. ** The
data themselves are promoted to words, but the routine remembers the type so as to assign the correct type to
the result. Finally, we call one of the two code generator routines, and then assign the result type. Not too
complicated, really.

At this point, I suggest that you go ahead and test the program. Try all combinations of operand sizes.

**Try: bbwwddB <cr>
b=b*b <cr> b=w*b <cr> b=d*b <cr>
w=b*w <cr> w=w*w <cr> w=d*w <cr>
d=b*d <cr> d=w*d <cr> d=d*d <cr>
b=100*10 <cr> w=32000*2 <cr> d=66000*10 <cr>

DIVISION

The case of division is not nearly so symmetric. I also have some bad news for you:

All modern 16-bit CPU's support integer divide. The manufacturer's data sheet will describe this
operation as a 32 x 16-bit divide, meaning that you can divide a 32-bit dividend by a 16-bit divisor. Here's the
bad news:

 THEY'RE LYING TO YOU!!!

If you don't believe it, try dividing any large 32-bit number (meaning that it has non-zero bits in the upper 16
bits) by the integer 1. You are guaranteed to get an overflow exception.

The problem is that the instruction really requires that the resulting quotient fit into a 16-bit result. This
won't happen UNLESS the divisor is sufficiently large. When any number is divided by unity, the quotient will
of course be the same as the dividend, which had better fit into a 16-bit word.

Since the beginning of time (well, computers, anyway), CPU architects have provided this little gotcha in
the division circuitry. It provides a certain amount of symmetry in things, since it is sort of the inverse of the
way a multiply works. But since unity is a perfectly valid (and rather common) number to use as a divisor, the
division as implemented in hardware needs some help from us programmers.

The implications are as follows:

 o The type of the quotient must always be the same as that of the dividend. It is independent of
 the divisor.

 o In spite of the fact that the CPU supports a longword dividend, the hardware-provided
 instruction can only be trusted for byte and word dividends. For longword dividends,
 we need another library routine that can return a long result.

This looks like a job for another table, to summarize the required actions:

 AX --> row
 BX / column

 |
 V

 T1 --> | | | |
 T2 | | | |
 | | B | W | D |
 V | | | |

 | | | |
 B | Convert AL to W | | Convert BL to W |
 | | | |
 | DIV | DIV | DIV |
 | Result = B | Result = B | Result = W |
 | | | |

 | | | |
 W | Convert AL to W | | |
 | DIV | DIV | DIV |
 | Result = W | Result = W | Result = W |
 | | | |

 | | | |
 D | Convert AL to D | Convert AX to D | |
 | Call DIV32 | Call DIV32 | Call DIV32 |
 | Result = D | Result = D | Result = D |
 | | | |

(You may wonder why it's necessary to do a 32-bit division, when the dividend is, say, only a byte in the first
place. Since the number of bits in the result can only be as many as that in the dividend, why bother? The
reason is that, if the divisor is a longword, and there are any high bits set in it, the result of the division must
be zero. We might not get that if we only use the lower word of the divisor.)

The following code provides the correct function for PopDiv:**

**Add changes to Prototypes:
 void GenDiv(char); void GenLongDiv(void);
 char SameTypeD(char,char); char PromoteD(char,char);

char PopDiv(char T1,char T2) /* Generate Code to Divide Stack by */
{ char T, Typ; /* the Primary */

 PopM(T1,T2);
 T = SameTypeD(T1, T2);
 if(strchr("BW", T))
 { if(T1 == 'D')
 { T2 = T;
 }
 GenDiv(T2);
 Typ = T2;
 }
 else
 { GenLongDiv();
 Typ = 'D';
 }
 return Typ;

}
/*-------------------------------*/

The two code generation procedures are:**

void GenDiv(char Size) /* Divide Primary by Top of Stack */
{
 if(Size == 'B')
 { EmitLn("xchg ax, bx");
 EmitLn("div bl");
 }
 else
 { EmitLn("xchg ax, bx");
 EmitLn("xchg dx, cx");
 EmitLn("div bx");
 }
}
/*-------------------------------*/

void GenLongDiv() /* Divide Top of Stack by Primary (Long) */
{
 EmitLn("xchg ax, bx");
 EmitLn("xchg dx, cx");
 EmitLn("call DIV32");
}
/*-------------------------------*/

char SameTypeD(char T1,char T2) /* Force both Arguments to Same Type */
{ char Typ;

 Typ = PromoteD(T1, T2);
 return Typ;
}
/*-------------------------------*/

**Note: as was the case with multiplication, division requires different versions of SameType and Promote. **

char PromoteD(char T1,char T2) /* Promote the Size of a */
{ char Typ; /* Register Value */

 Typ = T2;
 if(T1 != T2)
 { if(T2 == 'B')
 { if(T1 == 'D')
 { Typ = 'W';
 }
 }
 else if(T2 == 'W')
 { Typ = 'W';
 }
 else
 { Typ = 'D';
 }

 }
 return Typ;
}
/*-------------------------------*/

Note that we assume that DIV32 leaves the (longword) result in DX:AX.

OK, install the new procedures for division. At this point you should be able to generate code for any kind
of arithmetic expression. Give it a whirl!

**Try: bbwwddB <cr>
b=b/b <cr> b=w/b <cr> b=d/b <cr>
w=b/w <cr> w=w/w <cr> w=d/w <cr>
d=b/d <cr> d=w/d <cr> d=d/d <cr>
b=100/10 <cr> w=32000/2 <cr> d=66000/10 <cr>

BEGINNING TO WIND DOWN
At last, in this installment, we've learned how to deal with variables (and literals) of different types. As you
can see, it hasn't been too tough. In fact, in some ways most of the code looks even more simple than it
does in earlier programs. Only the multiplication and division operators require a little thinking and
planning.

The main concept that made things easy was that of converting procedures such as Expression into functions
that return the type of the result. Once this was done, we were able to retain the same general structure of
the compiler.

I won't pretend that we've covered every single aspect of the issue. I conveniently ignored unsigned
arithmetic. From what we've done, I think you can see that to include them adds no new challenges, just extra
possibilities to test for.

I've also ignored the logical operators And, Or, etc. It turns out that these are pretty easy to handle. All the
logical operators are bitwise operations, so they are symmetric and therefore work in the same fashion
as PopAdd. There is one difference, however: if it is necessary to extend the word length for a logical
variable, the extension should be done as an UNSIGNED number. Floating point numbers, again, are
straightforward to handle ... just a few more procedures to be added to the run-time library, or perhaps
instructions for a math chip.

Perhaps more importantly, I have also skirted the issue of type CHECKING, as opposed to conversion. In
other words, we've allowed for operations between variables of all combinations of types. In general this will
not be true ... certainly you don't want to add an integer, for example, to a string. Most languages also don't
allow you to mix up character and integer variables.

Again, there are really no new issues to be addressed in this case. We are already checking the types of the
two operands ... much of this checking gets done in procedures like SameType. It's pretty straightforward
to include a call to an error handler, if the types of the two operands are incompatible.

In the general case, we can think of every single operator as being handled by a different procedure,
depending upon the type of the two operands. This is straightforward, though tedious, to implement simply by
implementing a jump table with the operand types as indices. In Pascal, the equivalent operation would
involve nested Case statements. Some of the called procedures could then be simple error routines, while
others could effect whatever kind of conversion we need. As more types are added, the number of
procedures goes up by a square-law rule, but that's still not an unreasonably large number of procedures.

What we've done here is to collapse such a jump table into far fewer procedures, simply by making use of

symmetry and other simplifying rules.

TO COERCE OR NOT TO COERCE
In case you haven't gotten this message yet, it sure appears that TINY and KISS will probably _NOT_ be
strongly typed languages, since I've allowed for automatic mixing and conversion of just about any type.
Which brings up the next issue:

 Is this really what we want to do?

The answer depends on what kind of language you want, and the way you'd like it to behave. What we have not
addressed is the issue of when to allow and when to deny the use of operations involving different data types.
In other words, what should be the SEMANTICS of our compiler? Do we want automatic type conversion
for all cases, for some cases, or not at all?

Let's pause here to think about this a bit more. To do so, it will help to look at a bit of history.

FORTRAN II supported only two simple data types: Integer and Real. It allowed implicit type conversion
between real and integer types during assignment, but not within expressions. All data items (including literal
constants) on the right-hand side of an assignment statement had to be of the same type. That made things
pretty easy ... much simpler than what we've had to do here.

This was changed in FORTRAN IV to support "mixed-mode" arithmetic. If an expression had any real
data items in it, they were all converted to reals and the expression itself was real. To round out the picture,
functions were provided to explicitly convert from one type to the other, so that you could force an expression
to end up as either type.

This led to two things: code that was easier to write, and code that was less efficient. That's because sloppy
programmers would write expressions with simple constants like 0 and 1 in them, which the compiler would
dutifully compile to convert at execution time. Still, the system worked pretty well, which would tend to
indicate that implicit type conversion is a Good Thing.

C is also a weakly typed language, though it supports a larger number of types. C won't complain if you try to
add a character to an integer, for example. Partly, this is helped by the C convention of promoting every
char to integer when it is loaded, or passed through a parameter list. This simplifies the conversions quite
a bit. In fact, in subset C compilers that don't support long or float types, we end up back where we were in
our earlier, simple-minded first try: every variable has the same representation, once loaded into a register.
Makes life pretty easy!

The ultimate language in the direction of automatic type conversion is PL/I. This language supports a
large number of data types, and you can mix them all freely. If the implicit conversions of FORTRAN seemed
good, then those of PL/I should have been Heaven, but it turned out to be more like Hell! The problem was
that with so many data types, there had to be a large number of different conversions, AND a correspondingly
large number of rules about how mixed operands should be converted. These rules became so complex that
no one could remember what they were! A lot of the errors in PL/I programs had to do with unexpected and
unwanted type conversions. Too much of a Good Thing can be bad for you!

Pascal, on the other hand, is a language which is "strongly typed," which means that in general you can't
mix types, even if they differ only in _NAME_, and yet have the same base type! Niklaus Wirth made Pascal
strongly typed to help keep programmers out of trouble, and the restrictions have indeed saved many a
programmer from himself, because the compiler kept him from doing something dumb. Better to find the bug
in compilation rather than the debug phase. The same restrictions can also cause frustration when you
really WANT to mix types, and they tend to drive an ex-C-programmer up the wall.

Even so, Pascal does permit some implicit conversions. You can assign an integer to a real value. You can
also mix integer and real types in expressions of type Real. The integers will be automatically coerced to real,
just as in FORTRAN (and with the same hidden cost in run-time overhead).

You can't, however, convert the other way, from real to integer, without applying an explicit conversion

function, Trunc. The theory here is that, since the numerical value of a real number is necessarily going to
be changed by the conversion (the fractional part will be lost), you really shouldn't do it in "secret."

In the spirit of strong typing, Pascal will not allow you to mix Char and Integer variables, without applying
the explicit coercion functions Chr and Ord.

Turbo Pascal also includes the types Byte, Word, and LongInt. The first two are basically the same as
unsigned integers. In Turbo, these can be freely intermixed with variables of type Integer, and Turbo will
automatically handle the conversion. There are run-time checks, though, to keep you from overflowing or
otherwise getting the wrong answer. Note that you still can't mix Byte and Char types, even though they are
stored internally in the same representation.

The ultimate in a strongly-typed language is Ada, which allows _NO_ implicit type conversions at all, and
also will not allow mixed-mode arithmetic. Jean Ichbiah's position is that conversions cost execution
time, and you shouldn't be allowed to build in such cost in a hidden manner. By forcing the programmer to
explicitly request a type conversion, you make it more apparent that there could be a cost involved.

I have been using another strongly-typed language, a delightful little language called Whimsical, by John
Spray. Although Whimsical is intended as a systems programming language, it also requires explicit
conversion EVERY time. There are NEVER any automatic conversions, even the ones supported by Pascal.

This approach does have certain advantages: The compiler never has to guess what to do: the programmer
always tells it precisely what he wants. As a result, there tends to be a more nearly one-to-one
correspondence between source code and compiled code, and John's compiler produces VERY tight code.

On the other hand, I sometimes find the explicit conversions to be a pain. If I want, for example, to add one to
a character, or AND it with a mask, there are a lot of conversions to make. If I get it wrong, the only error
message is "Types are not compatible." As it happens, John's particular implementation of the language in
his compiler doesn't tell you exactly WHICH types are not compatible ... it only tells you which LINE the error is
in.

I must admit that most of my errors with this compiler tend to be errors of this type, and I've spent a lot of
time with the Whimsical compiler, trying to figure out just WHERE in the line I've offended it. The only real
way to fix the error is to keep trying things until something works.

So what should we do in TINY and KISS? For the first one, I have the answer: TINY will support only the
types Char and Integer, and we'll use the C trick of promoting Chars to Integers internally. That means
that the TINY compiler will be _MUCH_ simpler than what we've already done. Type conversion in
expressions is sort of moot, since none will be required! Since longwords will not be supported, we also won't
need the MUL32 and DIV32 run-time routines, nor the logic to figure out when to call them. I _LIKE_ it!

KISS, on the other hand, will support the type Long.

Should it support both signed and unsigned arithmetic? For the sake of simplicity I'd rather not. It does add
quite a bit to the complexity of type conversions. Even Niklaus Wirth has eliminated unsigned (Cardinal)
numbers from his new language Oberon, with the argument that 32-bit integers should be long enough for
anybody, in either case.

But KISS is supposed to be a systems programming language, which means that we should be able to do
whatever operations that can be done in assembler. Since the 68000 supports both flavors of integers, I guess
KISS should, also. We've seen that logical operations need to be able to extend integers in an unsigned
fashion, so the unsigned conversion procedures are required in any case.

CONCLUSION
That wraps up our session on type conversions. Sorry you had to wait so long for it, but hope you feel that it
was worth the wait.

In the next few installments, we'll extend the simple types to include arrays and pointers, and we'll have a look

at what to do about strings. That should pretty well wrap up the mainstream part of the series. After that, I'll
give you the new versions of the TINY and KISS compilers, and then we'll start to look at optimization issues.

See you then.

INTRODUCTION
Can it really have been four years since I wrote installment fourteen of this series? Is it really possible that six
long years have passed since I began it? Funny how time flies when you're having fun, isn't it?

I won't spend a lot of time making excuses; only point out that things happen, and priorities change. In the four
years since installment fourteen, I've managed to get laid off, get divorced, have a nervous breakdown, begin a
new career as a writer, begin another one as a consultant, move, work on two real-time systems, and raise
fourteen baby birds, three pigeons, six possums, and a duck. For awhile there, the parsing of source code was
not high on my list of priorities. Neither was writing stuff for free, instead of writing stuff for pay. But I do try to
be faithful, and I do recognize and feel my responsibility to you, the reader, to finish what I've started. As the
tortoise said in one of my son's old stories, I may be slow, but I'm sure. I'm sure that there are people out
there anxious to see the last reel of this film, and I intend to give it to them. So, if you're one of those who's
been waiting, more or less patiently, to see how this thing comes out, thanks for your patience. I apologize for
the delay. Let's move on.

NEW STARTS, OLD DIRECTIONS
Like many other things, programming languages and programming styles change with time. In 1994, it seems a
little anachronistic to be programming in Turbo Pascal, when the rest of the world seems to have gone bananas
over C++. It also seems a little strange to be programming in a classical style when the rest of the world has
switched to object-oriented methods. Still, in spite of the four-year hiatus, it would be entirely too wrenching a
change, at this point, to switch to, say, C++ with object-orientation . Anyway, Pascal is still not only a powerful
programming language (more than ever, in fact), but it's a wonderful medium for teaching. C is a notoriously
difficult language to read ... it's often been accused, along with Forth, of being a "write-only language." When I
program in C++, I find myself spending at least 50% of my time struggling with language syntax rather than with
concepts. A stray "&" or "*" can not only change the functioning of the program, but its correctness as well. By
contrast, Pascal code is usually quite transparent and easy to read, even if you don't know the language. What
you see is almost always what you get, and we can concentrate on concepts rather than implementation details.
I've said from the beginning that the purpose of this tutorial series was not to generate the world's fastest
compiler, but to teach the fundamentals of compiler technology, while spending the least amount of time
wrestling with language syntax or other aspects of software implementation. Finally, since a lot of what we do in
this course amounts to software experimentation, it's important to have a compiler and associated environment
that compiles quickly and with no fuss. In my opinion, by far the most significant time measure in software
development is the speed of the edit/compile/test cycle. In this department, Turbo Pascal is king. The
compilation speed is blazing fast, and continues to get faster in every release (how do they keep doing that?).
Despite vast improvements in C compilation speed over the years, even Borland's fastest C/C++ compiler is still
no match for Turbo Pascal. Further, the editor built into their IDE, the make facility, and even their superb smart
linker, all complement each other to produce a wonderful environment for quick turnaround. For all of these
reasons, I intend to stick with Pascal for the duration of this series. We'll be using Turbo Pascal for Windows,
one of the compilers provided Borland Pascal with Objects, version 7.0. If you don't have this compiler, don't
worry ... nothing we do here is going to count on your having the latest version. Using the Windows version
helps me a lot, by allowing me to use the Clipboard to copy code from the compiler's editor into these
documents. It should also help you at least as much, copying the code in the other direction.

I've thought long and hard about whether or not to introduce objects to our discussion. I'm a big advocate of
object-oriented methods for all uses, and such methods definitely have their place in compiler technology. In
fact, I've written papers on just this subject (Refs. 1-3). But the architecture of a compiler which is based on
object-oriented approaches is vastly different than that of the more classical compiler we've been building.
Again, it would seem to be entirely too much to change these horses in mid-stream. As I said, programming
styles change. Who knows, it may be another six years before we finish this thing, and if we keep changing the
code every time programming style changes, we may NEVER finish.

So for now, at least, I've determined to continue the classical style in Pascal, though we might indeed discuss

objects and object orientation as we go. Likewise, the target machine will remain the Motorola 68000 family. Of
all the decisions to be made here, this one has been the easiest. Though I know that many of you would like to
see code for the 80x86, the 68000 has become, if anything, even more popular as a platform for embedded
systems, and it's to that application that this whole effort began in the first place. Compiling for the PC, MSDOS
platform, we'd have to deal with all the issues of DOS system calls, DOS linker formats, the PC file system and
hardware, and all those other complications of a DOS environment. An embedded system, on the other hand,
must run standalone, and it's for this kind of application, as an alternative to assembly language, that I've always
imagined that a language like KISS would thrive. Anyway, who wants to deal with the 80x86 architecture if they
don't have to?

The one feature of Turbo Pascal that I'm going to be making heavy use of is units. In the past, we've had to
make compromises between code size and complexity, and program functionality. A lot of our work has been in
the nature of computer experimentation, looking at only one aspect of compiler technology at a time. We did this
to avoid to avoid having to carry around large programs, just to investigate simple concepts. In the process,
we've re-invented the wheel and re-programmed the same functions more times than I'd like to count. Turbo
units provide a wonderful way to get functionality and simplicity at the same time: You write reusable code, and
invoke it with a single line. Your test program stays small, but it can do powerful things.

One feature of Turbo Pascal units is their initialization block. As with an Ada package, any code in the main
begin-end block of a unit gets executed as the program is initialized. As you'll see later, this sometimes gives us
neat simplifications in the code. Our procedure Init, which has been with us since Installment 1, goes away
entirely when we use units. The various routines in the Cradle, another key features of our approach, will get
distributed among the units.

The concept of units, of course, is no different than that of C modules. However, in C (and C++), the interface
between modules comes via preprocessor include statements and header files. As someone who's had to read
a lot of other people's C programs, I've always found this rather bewildering. It always seems that whatever
data structure you'd like to know about is in some other file. Turbo units are simpler for the very reason that
they're criticized by some: The function interfaces and their implementation are included in the same file. While
this organization may create problems with code security, it also reduces the number of files by half, which isn't
half bad. Linking of the object files is also easy, because the Turbo compiler takes care of it without the need for
make files or other mechanisms.

STARTING OVER?
Four years ago, in Installment 14, I promised you that our days of re-inventing the wheel, and recoding the same
software over and over for each lesson, were over, and that from now on we'd stick to more complete programs
that we would simply add new features to. I still intend to keep that promise; that's one of the main purposes for
using units. However, because of the long time since Installment 14, it's natural to want to at least do some
review, and anyhow, we're going to have to make rather sweeping changes in the code to make the transition to
units. Besides, frankly, after all this time I can't remember all the neat ideas I had in my head four years ago.
The best way for me to recall them is to retrace some of the steps we took to arrive at Installment 14. So I hope
you'll be understanding and bear with me as we go back to our roots, in a sense, and rebuild the core of the
software, distributing the routines among the various units, and bootstrapping ourselves back up to the point we
were at lo, those many moons ago. As has always been the case, you're going to get to see me make all the
mistakes and execute changes of direction, in real time. Please bear with me ... we'll start getting to the new
stuff before you know it.

Since we're going to be using multiple modules in our new approach, we have to address the issue of file
management. If you've followed all the other sections of this tutorial, you know that, as our programs evolve,
we're going to be replacing older, more simple-minded units with more capable ones. This brings us to an issue
of version control. There will almost certainly be times when we will overlay a simple file (unit), but later wish we
had the simple one again. A case in point is embodied in our predilection for using single-character variable
names, keywords, etc., to test concepts without getting bogged down in the details of a lexical scanner. Thanks
to the use of units, we will be doing much less of this in the future. Still, I not only suspect, but am certain that
we will need to save some older versions of files, for special purposes, even though they've been replaced by
newer, more capable ones.

To deal with this problem, I suggest that you create different directories, with different versions of the units as

needed. If we do this properly, the code in each directory will remain self-consistent. I've tentatively created
four directories: SINGLE (for single-character experimentation), MULTI (for, of course, multi-character
versions), TINY, and KISS.

Enough said about philosophy and details. Let's get on with the resurrection of the software.

THE INPUT UNIT
A key concept that we've used since Day 1 has been the idea of an input stream with one lookahead character.
All the parsing routines examine this character, without changing it, to decide what they should do next.
(Compare this approach with the C/Unix approach using getchar and unget, and I think you'll agree that our
approach is simpler). We'll begin our hike into the future by translating this concept into our new, unit-based
organization. The first unit, appropriately called Input, is shown below:**
**[Note: where Turbo units are referenced, C modules and headers will be substituted.]

/* - Header Includes - */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* ------ Constants ------ */
#define BEEP 7

/* - Global Variables - */
 char Look; /* look ahead character */

/* - Module Includes - */
#include "Input.c"
#include "Init.c"

void main() /* Main Program */
{
 Init();
}
/*-------------------------------*/

/* Module: Input.c */
/* - Function Prototypes - */
 void _GetChar(void);

void _GetChar() /* Read New Character From Input Stream */
{
 Look = getchar();
}
/*-------------------------------*/
{--}
{ Read New Character From Input Stream }
procedure GetChar;
begin

Read(Look);
end;

/* Module: Init.c */
/* - Function Prototypes - */
 void _GetChar(void);

void Init() /* Initialize */
{
 _GetChar();
}
/*-------------------------------*/

As you can see, there's nothing very profound, and certainly nothing complicated, about this unit, (**module)
since it consists of only a single procedure. But already, we can see how the use of units gives us advantages.
Note the executable code in the initialization block. This code "primes the pump" of the input stream for us,
something we've always had to do before, by inserting the call to GetChar in line, or in procedure Init. **[snip].
As I predicted earlier, this mechanism is going to make our lives much simpler as we proceed.I consider it to be
one of the most useful features of **, and I lean on it heavily.

Copy this unit into your compiler's IDE, and compile it. To test the software, of course, we always need a main
program. I used the following, really complex test program, which we'll later evolve into the Main for our
compiler:**

void main() /* Main Program */
{
 Init();
 printf("%c\n", Look);
}
/*-------------------------------*/

**[snip].
Go ahead and save the test program as **Main.c.
I hasten to point out, as I've done before, that the function of unit Input is, and always has been, considered to
be a dummy version of the real thing. In a production version of a compiler, the input stream will, of course,
come from a file rather than from the keyboard. And it will almost certainly include line buffering, at the very
least, and more likely, a rather large text buffer to support efficient disk I/O. The nice part about the unit
approach is that, as with objects, we can modify the code in the unit to be as simple or as sophisticated as we
like. As long as the interface, as embodied in the public procedures and the lookahead character, don't change,
the rest of the program is totally unaffected. And since units are compiled, rather than merely included, the time
required to link with them is virtually nil. Again, the result is that we can get all the benefits of sophisticated
implementations, without having to carry the code around as so much baggage.

In later installments, I intend to provide a full-blown IDE for the KISS compiler, using a true Windows application
generated by Borland's OWL applications framework. For now, though, we'll obey my #1 rule to live by: Keep It
Simple.

THE OUTPUT UNIT
Of course, every decent program should have output, and ours is no exception. Our output routines included
the Emit functions. The code for the corresponding output unit is shown next:**

/* Module: Output.c */
/* Function Prototypes */
 void Emit(char *);
 void EmitLn(char *);

void EmitLn(char *a_string) /* Output a String with Tab and CRLF */
{
 Emit(a_string);
 printf("\n");
}
/*-------------------------------*/

void Emit(char *a_string) /* Output a String with Tab */
{
 printf("\t%s", a_string);
}
/*-------------------------------*/

Test this unit with the following main program:**

**Add this Include to Main.c:
#include "Output.c"

void main() /* Main Program */
{
 Init();
 printf("Main:\n");
 EmitLn("Hello, world!");
}
/*-------------------------------*/

**[snip].

THE ERROR UNIT
Our next set of routines are those that handle errors. To refresh your memory, we take the approach, pioneered
by Borland in Turbo Pascal, of halting on the first error. Not only does this greatly simplify our code, by
completely avoiding the sticky issue of error recovery, but it also makes much more sense, in my opinion, in an
interactive environment. I know this may be an extreme position, but I consider the practice of reporting all
errors in a program to be an anachronism, a holdover from the days of batch processing. It's time to scuttle the
practice. So there.

In our original Cradle, we had two error-handling procedures: Error, which didn't halt, and Abort, which did. But I
don't think we ever found a use for the procedure that didn't halt, so in the new, lean and mean unit Errors,
shown next, procedure Error takes the place of Abort.**

/* Module: Error.c */
/* Function Prototypes */
 void Error(char *);
 void Expected(char *);

void Error(char *string) /* Report an Error */
{
 printf("%c\n", BEEP);
 printf("Error: %s.\n", string);
 exit(1);
}
/*-------------------------------*/

void Expected(char *string) /* Report What Was Expected */
{ char a_string[20];

 strcpy(a_string, string);
 strcat(a_string, " Expected");
 Error(a_string);
}
/*-------------------------------*/

As usual, here's a test program:**

**Add this Include to Main.c:
#include "Error.c"

void main() /* Main Program */
{
 Expected("Integer");
}
/*-------------------------------*/

**[snip].

SCANNING AND PARSING
The classical compiler architecture consists of separate modules for the lexical scanner, which supplies tokens
in the language, and the parser, which tries to make sense of the tokens as syntax elements. If you can still
remember what we did in earlier installments, you'll recall that we didn't do things that way. Because we're
using a predictive parser, we can almost always tell what language element is coming next, just by examining
the lookahead character. Therefore, we found no need to prefetch tokens, as a scanner would do.

But, even though there is no functional procedure called "Scanner," it still makes sense to separate the scanning
functions from the parsing functions. So I've created two more units called, amazingly enough, Scanner and
Parser. The Scanner unit contains all of the routines known as recognizers. Some of these, such as IsAlpha,
are pure boolean routines which operate on the lookahead character only. The other routines are those which
collect tokens, such as identifiers and numeric constants. The Parser unit will contain all of the routines making
up the recursive-descent parser. The general rule should be that unit Parser contains all of the information that
is language-specific; in other words, the syntax of the language should be wholly contained in Parser. In an
ideal world, this rule should be true to the extent that we can change the compiler to compile a different
language, merely by replacing the single unit, Parser.

In practice, things are almost never this pure. There's always a small amount of "leakage" of syntax rules into
the scanner as well. For example, the rules concerning what makes up a legal identifier or constant may vary
from language to language. In some languages, the rules concerning comments permit them to be filtered by
the scanner, while in others they do not. So in practice, both units are likely to end up having language-
dependent components, but the changes required to the scanner should be relatively trivial.

Now, recall that we've used two versions of the scanner routines: One that handled only single-character tokens,
which we used for a number of our tests, and another that provided full support for multi-character tokens. Now
that we have our software separated into units, I don't anticipate getting much use out of the single-character
version, but it doesn't cost us much to provide for both. I've created two versions of the Scanner unit. The first
one, called Scanner1, contains the single-digit version of the recognizers:**

/* Module: Scanner1.c */
/* Function Prototypes */
 int IsAddop(char); int IsMulop(char);
 char GetName(void); char GetNumber(void);

 void Match(char);

int IsAddop(char ch) /* Recognize an Addition Operator */
{ int rval;

 rval = 0;
 if(strchr("+-", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

int IsMulop(char ch) /* Recognize a Multiplication Operator */
{ int rval;

 rval = 0;
 if((ch == '*') || (ch == '/'))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

void Match(char x) /* Match One Character */
{ char a_string[10];

 if(Look == x)
 { _GetChar();
 }
 else
 { strcpy(a_string, "\" \"");
 a_string[1] = x;
 Expected(a_string);
 }
}
/*-------------------------------*/

char GetName() /* Get an Identifier */
{ char Name;

 if(! isalpha(Look))
 { Expected("Name");
 }
 Name = toupper(Look);
 _GetChar();
 return Name;
}
/*-------------------------------*/

char GetNumber() /* Get a Number */
{ char Num;

 if(! isdigit(Look))

 { Expected("Integer");
 }
 Num = Look;
 _GetChar();
 return Num;
}
/*-------------------------------*/

The following code fragment of the main program provides a good test of the scanner. For brevity, I'll only
include the executable code here; the rest remains the same. **

#include "Scanner1.c"

void main() /* Main Program */
{ char value;

 Init();
 value = GetName();
 printf("%c",value);
 Match('=');
 value = GetNumber();
 printf("%c",value);
 Match('+');
 value = GetName();
 printf("%c\n",value);
}
/*-------------------------------*/

This code will recognize all sentences of the form:

x=0+y

where x and y can be any single-character variable names, and 0 any digit. The code should reject all other
sentences, and give a meaningful error message. If it did, you're in good shape and we can proceed.

THE SCANNER UNIT
The next, and by far the most important, version of the scanner is the one that handles the multi-character
tokens that all real languages must have. Only the two functions, GetName and GetNumber, change between
the two units, but just to be sure there are no mistakes, I've reproduced the entire unit here. This is unit
Scanner:**

/* Module: Scanner.c */
/* Function Prototypes */
 int IsAddop(char); int IsMulop(char);
 char *GetName(void); char *GetNumber(void);
 void Match(char);

int IsAddop(char ch) /* Recognize an Addition Operator */
{ int rval;

 rval = 0;
 if(strchr("+-", ch))
 { rval = 1;
 }

 return rval;
}
/*-------------------------------*/

int IsMulop(char ch) /* Recognize a Multiplication Operator */
{ int rval;

 rval = 0;
 if((ch == '*') || (ch == '/'))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

void Match(char x) /* Match One Character */
{ char a_string[10];

 if(Look == x)
 { _GetChar();
 }
 else
 { strcpy(a_string, "\" \"");
 a_string[1] = x;
 Expected(a_string);
 }
}
/*-------------------------------*/

char *GetName() /* Get an Identifier */
{ static char Token[20];
 int ndx=0;

 if(! isalpha(Look))
 { Expected("Name");
 }
 while(isalnum(Look))
 { Token[ndx] = toupper(Look);
 ndx++;
 _GetChar();
 }
 Token[ndx] = '\0';
 return Token;
}
/*-------------------------------*/

char *GetNumber() /* Get a Number */
{ static char Value[10];
 int ndx=0;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { Value[ndx] = Look;

 ndx++;
 _GetChar();
 }
 Value[ndx] = '\0';
 return Value;
}
/*-------------------------------*/

The same test program will test this scanner, also. Simply change the "#includes" clause to use Scanner instead
of Scanner1. Now you should be able to type multi-character names and numbers.**

#include "Scanner.c"

void main() /* Main Program */
{ char value[20];

 Init();
 strcpy(value, GetName());
 printf("%s",value);
 Match('=');
 strcpy(value, GetNumber());
 printf("%s",value);
 Match('+');
 strcpy(value, GetName());
 printf("%s\n",value);
}
/*-------------------------------*/

**Now try: xyz=100+abc

DECISIONS, DECISIONS
In spite of the relative simplicity of both scanners, a lot of thought has gone into them, and a lot of decisions had
to be made. I'd like to share those thoughts with you now so you can make your own educated decision,
appropriate for your application. First, note that both versions of GetName translate the input characters to
upper case. Obviously, there was a design decision made here, and this is one of those cases where the
language syntax splatters over into the scanner. In the C language, the case of characters in identifiers is
significant. For such a language, we obviously can't map the characters to upper case. The design I'm using
assumes a language like Pascal, where the case of characters doesn't matter. For such languages, it's easier
to go ahead and map all identifiers to upper case in the scanner, so we don't have to worry later on when we're
comparing strings for equality.

We could have even gone a step further, and map the characters to upper case right as they come in, in
GetChar. This approach works too, and I've used it in the past, but it's too confining. Specifically, it will also map
characters that may be part of quoted strings, which is not a good idea. So if you're going to map to upper case
at all, GetName is the proper place to do it.

Note that the function GetNumber in this scanner returns a string, just as GetName does. This is another one of
those things I've oscillated about almost daily, and the last swing was all of ten minutes ago. The alternative
approach, and one I've used many times in past installments, returns an integer result.

Both approaches have their good points. Since we're fetching a number, the approach that immediately comes
to mind is to return it as an integer. But bear in mind that the eventual use of the number will be in a write
statement that goes back to the outside world. Someone -- either us or the code hidden inside the write
statement -- is going to have to convert the number back to a string again. Turbo Pascal includes such string

conversion routines, but why use them if we don't have to? Why convert a number from string to integer form,
only to convert it right back again in the code generator, only a few statements later?

Furthermore, as you'll soon see, we're going to need a temporary storage spot for the value of the token we've
fetched. If we treat the number in its string form, we can store the value of either a variable or a number in the
same string. Otherwise, we'll have to create a second, integer variable.

On the other hand, we'll find that carrying the number as a string virtually eliminates any chance of optimization
later on. As we get to the point where we are beginning to concern ourselves with code generation, we'll
encounter cases in which we're doing arithmetic on constants. For such cases, it's really foolish to generate
code that performs the constant arithmetic at run time. Far better to let the parser do the arithmetic at compile
time, and merely code the result. To do that, we'll wish we had the constants stored as integers rather than
strings.

What finally swung me back over to the string approach was an aggressive application of the KISS test, plus
reminding myself that we've studiously avoided issues of code efficiency. One of the things that makes our
simple-minded parsing work, without the complexities of a "real" compiler, is that we've said up front that we
aren't concerned about code efficiency. That gives us a lot of freedom to do things the easy way rather than the
efficient one, and it's a freedom we must be careful not to abandon voluntarily, in spite of the urges for efficiency
shouting in our ear. In addition to being a big believer in the KISS philosophy, I'm also an advocate of "lazy
programming," which in this context means, don't program anything until you need it. As P.J. Plauger says,
"Never put off until tomorrow what you can put off indefinitely." Over the years, much code has been written to
provide for eventualities that never happened. I've learned that lesson myself, from bitter experience. So the
bottom line is: We won't convert to an integer here because we don't need to. It's as simple as that.

For those of you who still think we may need the integer version (and indeed we may), here it is:**

long GetNumber() /* Get a Number */
{ long Val=0;
 int x;

 if(! isdigit(Look))
 { Expected("Integer");
 }
 while(isdigit(Look))
 { x = Look - '0';
 Val = 10 * Val + x;
 _GetChar();
 }
 return Val;
}
/*-------------------------------*/

You might file this one away, as I intend to, for a rainy day.

PARSING
At this point, we have distributed all the routines that made up our Cradle into units that we can draw upon as
we need them. Obviously, they will evolve further as we continue the process of bootstrapping ourselves up
again, but for the most part their content, and certainly the architecture that they imply, is defined. What
remains is to embody the language syntax into the parser unit. We won't do much of that in this installment, but
I do want to do a little, just to leave us with the good feeling that we still know what we're doing. So before we
go, let's generate just enough of a parser to process single factors in an expression. In the process, we'll also,
by necessity, find we have created a code generator unit, as well.

Remember the very first installment of this series? We read an integer value, say n, and generated the code to

load it into the AX register via an immediate move:**

MOV AX, 100

Shortly afterwards, we repeated the process for a variable, **

MOV AX, ABC

and then for a factor that could be either constant or variable. For old times sake, let's revisit that process.
Define the following new unit:**

/* Module: Parser.c */
/* Function Prototypes */
 char Factor(void);

void Factor() /* Parse and Translate a Factor */
{ char value[10];

 strcpy(value, GetNumber());
 LoadConstant(value);
}
/*-------------------------------*/

As you can see, this unit calls a procedure, LoadConstant, which actually effects the output of the assembly-
language code. The unit also uses a new unit, CodeGen. This step represents the last major change in our
architecture, from earlier installments: The removal of the machine-dependent code to a separate unit. If I have
my way, there will not be a single line of code, outside of CodeGen, that betrays the fact that we're targeting the
68000 CPU. And this is one place I think that having my way is quite feasible.

For those of you who wish I were using the 80x86 architecture (or any other one) instead of the 68000, here's
your answer: Merely replace CodeGen with one suitable for your CPU of choice.

So far, our code generator has only one procedure in it. Here's the unit:**

/* Module: CodeGen.c */
/* Function Prototypes */
 void LoadConstant(char *);

void LoadConstant(char *N) /* Load the Primary Register with */
{ char a_string[20]; /* a Constant */

 strcpy(a_string, "MOV AX, ");
 strcat(a_string, N);
 EmitLn(a_string);
}
/*-------------------------------*/

Copy and compile this unit, and execute the following main program:**

#include "Parser.c"
#include "CodeGen.c"

void main() /* Main Program */
{
 Init();
 Factor();
}
/*-------------------------------*/

There it is, the generated code, just as we hoped it would be.

Now, I hope you can begin to see the advantage of the unit-based architecture of our new design. Here we
have a main program that's all of five lines long. That's all of the program we need to see, unless we choose to
see more. And yet, all those units are sitting there, patiently waiting to serve us. We can have our cake and eat
it too, in that we have simple and short code, but powerful allies. What remains to be done is to flesh out the
units to match the capabilities of earlier installments. We'll do that in the next installment, but before I close, let's
finish out the parsing of a factor, just to satisfy ourselves that we still know how. The final version of CodeGen
includes the new procedure, LoadVariable:**

/* Module: CodeGen.c */
/* Function Prototypes */
 void LoadConstant(char *);
 void LoadVariable(char *);

void LoadConstant(char *N) /* Load the Primary Register with */
{ char a_string[20]; /* a Constant */

 strcpy(a_string, "mov ax, ");
 strcat(a_string, N);
 EmitLn(a_string);
}
/*-------------------------------*/

void LoadVariable(char *Name) /* Load a Variable to the Primary */
{ char a_string[30]; /* Register */

 strcpy(a_string, "mov ax, ");
 strcat(a_string, Name);
 EmitLn(a_string);
}
/*-------------------------------*/

The parser unit itself doesn't change, but we have a more complex version of procedure Factor:**

/* Module: Parser.c */
/* Function Prototypes */
 char Factor(void);

void Factor() /* Parse and Translate a Factor */
{ char value[30];

 if(isdigit(Look))
 { strcpy(value, GetNumber());
 LoadConstant(value);
 }

 else if(isalpha(Look))
 { strcpy(value, GetName());
 LoadVariable(value);
 }
 else
 { strcpy(value, "Unrecognized character ");
 value[23] = Look;
 Error(value);
 }
}
/*-------------------------------*/

Now, without altering the main program, you should find that our program will process either a variable or a
constant factor. At this point, our architecture is almost complete; we have units to do all the dirty work, and
enough code in the parser and code generator to demonstrate that everything works. What remains is to flesh
out the units we've defined, particularly the parser and code generator, to support the more complex syntax
elements that make up a real language. Since we've done this many times before in earlier installments, it
shouldn't take long to get us back to where we were before the long hiatus. We'll continue this process in
Installment 16, coming soon. See you then.

REFERENCES
1. Crenshaw, J.W., "Object-Oriented Design of Assemblers and Compilers," Proc. Software Development

'91 Conference, Miller Freeman, San Francisco, CA, February 1991, pp. 143-155.

2. Crenshaw, J.W., "A Perfect Marriage," Computer Language, Volume 8, #6, June 1991, pp. 44-55.

3. Crenshaw, J.W., "Syntax-Driven Object-Oriented Design," Proc. 1991 Embedded Systems Conference,
Miller Freeman, San Francisco, CA, September 1991, pp. 45-60.

INTRODUCTION
This series of tutorials promises to be perhaps one of the longest-running mini-series in history, rivalled only by
the delay in Volume IV of Knuth. Begun in 1988, the series ran into a four-year hiatus in 1990 when the "cares
of this world," changes in priorities and interests, and the need to make a living seemed to stall it out after
Installment 14. Those of you with loads of patience were finally rewarded, in the spring of last year, with the
long-awaited Installment 15. In it, I began to try to steer the series back on track, and in the process, to make it
easier to continue on to the goal, which is to provide you with not only enough understanding of the difficult
subject of compiler theory, but also enough tools, in the form of canned subroutines and concepts, so that you
would be able to continue on your own and become proficient enough to build your own parsers and translators.
Because of that long hiatus, I thought it appropriate to go back and review the concepts we have covered so far,
and to redo some of the software, as well. In the past, we've never concerned ourselves much with the
development of production-quality software tools ... after all, I was trying to teach (and learn) concepts, not
production practice. To do that, I tended to give you, not complete compilers or parsers, but only those snippets
of code that illustrated the particular point we were considering at the moment.

I still believe that's a good way to learn any subject; no one wants to have to make changes to 100,000 line
programs just to try out a new idea. But the idea of just dealing with code snippets, rather than complete
programs, also has its drawbacks in that we often seemed to be writing the same code fragments over and over.
Although repetition has been thoroughly proven to be a good way to learn new ideas, it's also true that one can
have too much of a good thing. By the time I had completed Installment 14 I seemed to have reached the limits
of my abilities to juggle multiple files and multiple versions of the same software functions. Who knows, perhaps
that's one reason I seemed to have run out of gas at that point.
**[snip].

Since, by now, most of you are programming in either C or C++, I know what you're thinking: Borland, with their
Turbo Pascal (TP), certainly didn't invent the concept of separately compilable modules. And of course you're

right. But if you've not used TP lately, or ever, you may not realize just how painless the whole process is.
Even in C or C++, you still have to build a make file, either manually or by telling the compiler how to do so. You
must also list, using "extern" statements or header files, the functions you want to import. In TP, you don't even
have to do that. You need only name the units you wish to use, and all of their procedures automatically
become available.

It's not my intention to get into a language-war debate here, so I won't pursue the subject any further. Even I no
longer use Pascal on my job ... I use C at work and C++ for my articles in Embedded Systems Programming
and other magazines. Believe me, when I set out to resurrect this series, I thought long and hard about
switching both languages and target systems to the ones that we're all using these days, C/C++ and PC
architecture, and possibly object-oriented methods as well. In the end, I felt it would cause more confusion than
the hiatus itself has. And after all, Pascal still remains one of the best possible languages for teaching, not to
mention production programming. Finally, TP still compiles at the speed of light, much faster than competing
C/C++ compilers. And Borland's smart linker, used in TP but not in their C++ products, is second to none.
Aside from being much faster than Microsoft-compatible linkers, the Borland smart linker will cull unused
procedures and data items, even to the extent of trimming them out of defined objects if they're not needed. For
one of the few times in our lives, we don't have to compromise between completeness and efficiency. When
we're writing a TP unit, we can make it as complete as we like, including any member functions and data items
we may think we will ever need, confident that doing so will not create unwanted bloat in the compiled and linked
executable.
**[snip].

Using this principle, in Installment 15 I set out to minimize our tendency to re-invent the wheel by organizing our
code into separate Turbo Pascal units, each containing different parts of the compiler. We ended up with the
following units:

* Input
* Output
* Errors
* Scanner
* Parser
* CodeGen

Each of these units serves a different function, and encapsulates specific areas of functionality. The Input and
Output units, as their name implies, provide character stream I/O and the all-important lookahead character
upon which our predictive parser is based. The Errors unit, of course, provides standard error handling. The
Scanner unit contains all of our boolean functions such as IsAlpha, and the routines GetName and GetNumber,
which process multi-character tokens.

The two units we'll be working with the most, and the ones that most represent the personality of our compiler,
are Parser and CodeGen. Theoretically, the Parser unit should encapsulate all aspects of the compiler that
depend on the syntax of the compiled language (though, as we saw last time, a small amount of this syntax
spills over into Scanner). Similarly, the code generator unit, CodeGen, contains all of the code dependent upon
the target machine. In this installment, we'll be continuing with the development of the functions in these two all-
important units.

JUST LIKE CLASSICAL?
Before we proceed, however, I think I should clarify the relationship between, and the functionality of these
units. Those of you who are familiar with compiler theory as taught in universities will, of course, recognize the
names, Scanner, Parser, and CodeGen, all of which are components of a classical compiler implementation.
You may be thinking that I've abandoned my commitment to the KISS philosophy, and drifted towards a more
conventional architecture than we once had. A closer look, however, should convince you that, while the names
are similar, the functionalities are quite different.

Together, the scanner and parser of a classical implementation comprise the so-called "front end," and the code

generator, the back end. The front end routines process the language-dependent, syntax-related aspects of the
source language, while the code generator, or back end, deals with the target machine-dependent parts of the
problem. In classical compilers, the two ends communicate via a file of instructions written in an intermediate
language (IL).

Typically, a classical scanner is a single procedure, operating as a co-procedure with the parser. It "tokenizes"
the source file, reading it character by character, recognizing language elements, translating them into tokens,
and passing them along to the parser. You can think of the parser as an abstract machine, executing "op
codes," which are the tokens. Similarly, the parser generates op codes of a second abstract machine, which
mechanizes the IL. Typically, the IL file is written to disk by the parser, and read back again by the code
generator.

Our organization is quite different. We have no lexical scanner, in the classical sense; our unit Scanner, though
it has a similar name, is not a single procedure or co-procedure, but merely a set of separate subroutines which
are called by the parser as needed.

Similarly, the classical code generator, the back end, is a translator in its own right, reading an IL "source" file,
and emitting an object file. Our code generator doesn't work that way. In our compiler, there IS no intermediate
language; every construct in the source language syntax is converted into assembly language as it is recognized
by the parser. Like Scanner, the unit CodeGen consists of individual procedures which are called by the parser
as needed.

This "code 'em as you find 'em" philosophy may not produce the world's most efficient code -- for example, we
haven't provided (yet!) a convenient place for an optimizer to work its magic -- but it sure does simplify the
compiler, doesn't it?

And that observation prompts me to reflect, once again, on how we have managed to reduce a compiler's
functions to such comparatively simple terms. I've waxed eloquent on this subject in past installments, so I
won't belabor the point too much here. However, because of the time that's elapsed since those last soliloquies,
I hope you'll grant me just a little time to remind myself, as well as you, how we got here. We got here by
applying several principles that writers of commercial compilers seldom have the luxury of using. These are:

o The KISS philosophy -- Never do things the hard way without a reason

o Lazy coding -- Never put off until tomorrow what you can put of forever (with credits to P.J.
 Plauger)

o Skepticism -- Stubborn refusal to do something just because that's the way it's always
 been done.

o Acceptance of inefficient code

o Rejection of arbitrary constraints

As I've reviewed the history of compiler construction, I've learned that virtually every production compiler in
history has suffered from pre-imposed conditions that strongly influenced its design. The original FORTRAN
compiler of John Backus, et al, had to compete with assembly language, and therefore was constrained to
produce extremely efficient code. The IBM compilers for the minicomputers of the 70's had to run in the very
small RAM memories then available -- as small as 4k. The early Ada compiler had to compile itself. Per Brinch
Hansen decreed that his Pascal compiler developed for the IBM PC must execute in a 64k machine. Compilers
developed in Computer Science courses had to compile the widest variety of languages, and therefore required
LALR parsers.

In each of these cases, these preconceived constraints literally dominated the design of the compiler.

A good example is Brinch Hansen's compiler, described in his excellent book, "Brinch Hansen on Pascal
Compilers" (highly recommended). Though his compiler is one of the most clear and un-obscure compiler
implementations I've seen, that one decision, to compile large files in a small RAM, totally drives the design, and
he ends up with not just one, but many intermediate files, together with the drivers to write and read them.

In time, the architectures resulting from such decisions have found their way into computer science lore as
articles of faith. In this one man's opinion, it's time that they were re-examined critically. The conditions,
environments, and requirements that led to classical architectures are not the same as the ones we have today.
There's no reason to believe the solutions should be the same, either.

In this tutorial, we've followed the leads of such pioneers in the world of small compilers for Pcs as Leor Zolman,
Ron Cain, and James Hendrix, who didn't know enough compiler theory to know that they "couldn't do it that
way." We have resolutely refused to accept arbitrary constraints, but rather have done whatever was easy. As
a result, we have evolved an architecture that, while quite different from the classical one, gets the job done in
very simple and straightforward fashion.

I'll end this philosophizing with an observation re the notion of an intermediate language. While I've noted before
that we don't have one in our compiler, that's not exactly true; we _DO_ have one, or at least are evolving one,
in the sense that we are defining code generation functions for the parser to call. In essence, every call to a
code generation procedure can be thought of as an instruction in an intermediate language. Should we ever find
it necessary to formalize an intermediate language, this is the way we would do it: emit codes from the parser,
each representing a call to one of the code generator procedures, and then process each code by calling those
procedures in a separate pass, implemented in a back end. Frankly, I don't see that we'll ever find a need for
this approach, but there is the connection, if you choose to follow it, between the classical and the current
approaches.

FLESHING OUT THE PARSER
Though I promised you, somewhere along about Installment 14, that we'd never again write every single
function from scratch, I ended up starting to do just that in Installment 15. One reason: that long hiatus between
the two installments made a review seem eminently justified ... even imperative, both for you and for me. More
importantly, the decision to collect the procedures into modules (units), forced us to look at each one yet again,
whether we wanted to or not. And, finally and frankly, I've had some new ideas in the last four years that
warranted a fresh look at some old friends. When I first began this series, I was frankly amazed, and pleased,
to learn just how simple parsing routines can be made. But this last time around, I've surprised myself yet
again, and been able to make them just that last little bit simpler, yet.

Still, because of this total rewrite of the parsing modules, I was only able to include so much in the last
installment. Because of this, our hero, the parser, when last seen, was a shadow of his former self, consisting
of only enough code to parse and process a factor consisting of either a variable or a constant. The main effort
of this current installment will be to help flesh out the parser to its former glory. In the process, I hope you'll bear
with me if we sometimes cover ground we've long since been over and dealt with.

First, let's take care of a problem that we've addressed before: Our current version of procedure Factor, as we
left it in Installment 15, can't handle negative arguments. To fix that, we'll introduce the procedure
SignedFactor: **

**Add this to module Parser.c:
 void SignedFactor(void);

void SignedFactor() /* Parse and Translate a Factor with Optional */
{ char Sign; /* Sign */

 Sign = Look;
 if(IsAddop(Look))
 { _GetChar();
 }
 Factor();
 if(Sign == '-')
 { Negate();
 }
}
/*-------------------------------*/

Note that this procedure calls a new code generation routine, Negate: **

**Add this to module CodeGen.c:
 void Negate(void);

void Negate() /* Negate Primary */
{
 EmitLn("neg ax");
}
/*-------------------------------*/

(Here, and elsewhere in this series, I'm only going to show you the new routines. I'm counting on you to put
them into the proper unit, which you should normally have no trouble identifying. Don't forget to add the
procedure's prototype to the interface section of the unit.)

In the main program, simply change the procedure called from Factor to SignedFactor, and give the code a test.

Yes, I know, the code isn't very efficient. If we input a number, -3, the generated code is: **

MOV AX, 3
NEG AX

which is really, really dumb. We can do better, of course, by simply pre-appending a minus sign to the string
passed to LoadConstant, but it adds a few lines of code to SignedFactor, and I'm applying the KISS philosophy
very aggressively here. What's more, to tell the truth, I think I'm subconsciously enjoying generating "really,
really dumb" code, so I can have the pleasure of watching it get dramatically better when we get into
optimization methods.

Most of you have never heard of John Spray, so allow me to introduce him to you here. John's from New
Zealand, and used to teach computer science at one of its universities. John wrote a compiler for the Motorola
6809, based on a delightful, Pascal-like language of his own design called "Whimsical." He later ported the
compiler to the 68000, and for awhile it was the only compiler I had for my homebrewed 68000 system.

For the record, one of my standard tests for any new compiler is to see how the compiler deals with a null
program like:

program main;
begin
end.

My test is to measure the time required to compile and link, and the size of the object file generated. The
undisputed _LOSER_ in the test is the DEC C compiler for the VAX, which took 60 seconds to compile, on a
VAX 11/780, and generated a 50k object file. John's compiler is the undisputed, once, future, and forever king
in the code size department. Given the null program, Whimsical generates precisely two bytes of code,
implementing the one instruction,

RET

By setting a compiler option to generate an include file rather than a standalone program, John can even cut this
size, from two bytes to zero! Sort of hard to beat a null object file, wouldn't you say?

Needless to say, I consider John to be something of an expert on code optimization, and I like what he has to
say: "The best way to optimize is not to have to optimize at all, but to produce good code in the first place."
Words to live by. When we get started on optimization, we'll follow John's advice, and our first step will not be to
add a peephole optimizer or other after-the-fact device, but to improve the quality of the code emitted before
optimization. So make a note of SignedFactor as a good first candidate for attention, and for now we'll leave it

be.

TERMS AND EXPRESSIONS
I'm sure you know what's coming next: We must, yet again, create the rest of the procedures that implement the
recursive-descent parsing of an expression. We all know that the hierarchy of procedures for arithmetic
expressions is:

expression
term

factor

However, for now let's continue to do things one step at a time, and consider only expressions with additive
terms in them. The code to implement expressions, including a possibly signed first term, is shown next: **

**Add these to module Parser.c:
 void Expression(void);
 void Add(void);
 void Subtract(void);

void Expression() /* Parse and Translate an Expression */
{
 SignedFactor();
 while(IsAddop(Look))
 { switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

This procedure calls two other procedures to process the operations: **

void Add() /* Parse and Translate an Addition Operation */
{
 Match('+');
 Push();
 Factor();
 PopAdd();
}
/*-------------------------------*/

void Subtract() /* Parse and Translate a Subtraction Operation */
{
 Match('-');
 Push();
 Factor();

 PopSub();
}
/*-------------------------------*/

The three procedures Push, PopAdd, and PopSub are new code generation routines. As the name implies,
procedure Push generates code to push the primary register (**AX, in our **x86 implementation) to the stack.
PopAdd and PopSub pop the top of the stack again, and add it to, or subtract it from, the primary register. The
code is shown next: **

**Add these to module CodeGen.c:
 void Push(void);
 void PopAdd(void);
 void PopSub(void);

void Push() /* Push Primary to Stack */
{
 EmitLn("push ax");
}
/*-------------------------------*/

void PopAdd() /* Add TOS to Primary */
{
 EmitLn("mov si, sp");
 EmitLn("add [si], ax");
 EmitLn("pop ax");
}
/*-------------------------------*/

void PopSub() /* Subtract TOS from Primary */
{
 EmitLn("mov si, sp");
 EmitLn("sub [si], ax");
 EmitLn("pop ax");
}
/*-------------------------------*/

Add these routines to Parser and CodeGen, and change the main program to call Expression. **

void main() /* Main Program */
{
 Init();
 Expression();
}
/*-------------------------------*/

Voila!

The next step, of course, is to add the capability for dealing with multiplicative terms. To that end, we'll add a
procedure Term, and code generation procedures PopMul and PopDiv. These code generation procedures are
shown next: **

**Add these to module CodeGen.c:
 void PopMul(void);
 void PopDiv(void);

void PopMul() /* Multiply TOS by Primary */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("mul bx");
}
/*-------------------------------*/

void PopDiv() /* Divide Primary by TOS */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("div bx");
}
/*-------------------------------*/

**[snip]. Note the use of signed multiply and divide operations. This follows an implied, but unstated,
assumption, that all our variables will be signed 16-bit integers. This decision will come back to haunt us later,
when we start looking at multiple data types, type conversions, etc.

Our procedure Term is virtually a clone of Expression, and looks like this: **

**Add this to module Parser.c:
 void Term(void);

void Term() /* Parse and Translate a Term */
{
 Factor();
 while(IsMulop(Look))
 { switch(Look)
 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

Our next step is to change some names. SignedFactor now becomes SignedTerm, and the calls to Factor in
Expression, Add, Subtract and SignedTerm get changed to call Term: **

void SignedTerm() /* Parse and Translate a Factor with Optional Sign */
{ char Sign;

 Sign = Look;
 if(IsAddop(Look))
 { _GetChar();
 }

 Term();
 if(Sign == '-')
 { Negate();
 }
}
/*-------------------------------*/

...

void Expression() /* Parse and Translate an Expression */
{
 SignedTerm();
 while(IsAddop(Look))
 { switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

If memory serves me correctly, we once had BOTH a procedure SignedFactor and a procedure SignedTerm. I
had reasons for doing that at the time ... they had to do with the handling of Boolean algebra and, in particular,
the Boolean "not" function. But certainly, for arithmetic operations, that duplication isn't necessary. In an
expression like:

-x*y

it's very apparent that the sign goes with the whole TERM, x*y, and not just the factor x, and that's the way
Expression is coded.

Test this new code by executing Main. It still calls Expression, so you should now be able to deal with
expressions containing any of the four arithmetic operators.
**Note: as supplied, the above code will not compile, it's missing functions Multiply and Divide, so I have
furnished what should work, here: **

**Add this to module Parser.c:
 void Multiply(void);
 void Divide(void);

void Multiply() /* Parse and Translate a Multiply Operation */
{
 Match('*');
 Push();
 Term();
 PopMul();
}
/*-------------------------------*/

void Divide() /* Parse and Translate a Divide Operation */
{

 Match('/');
 Push();
 Term();
 PopDiv();
}
/*-------------------------------*/

Our last bit of business, as far as expressions goes, is to modify procedure Factor to allow for parenthetical
expressions. By using a recursive call to Expression, we can reduce the needed code to virtually nothing. Five
lines added to Factor do the job: **

void Factor() /* Parse and Translate a Factor */
{ char value[30];

 if(Look =='(')
 { Match('(');
 Expression();
 Match(')');
 }
 else if(isdigit(Look))
 { strcpy(value, GetNumber());
 LoadConstant(value);
 }
 else if(isalpha(Look))
 { strcpy(value, GetName());
 LoadVariable(value);
 }
 else
 { strcpy(value, "Unrecognized character ");
 value[23] = Look;
 Error(value);
 }
}
/*-------------------------------*/

At this point, your "compiler" should be able to handle any legal expression you can throw at it. Better yet, it
should reject all illegal ones!

ASSIGNMENTS
As long as we're this close, we might as well create the code to deal with an assignment statement. This code
needs only to remember the name of the target variable where we are to store the result of an expression, call
Expression, then store the number. The procedure is shown next: **

**Add this to module Parser.c:
 void Assignment(void);

void Assignment() /* Parse and Translate an Assignment Statement */
{ char Name[20];

 strcpy(Name, GetName());
 Match('=');
 Expression();
 StoreVariable(Name);

}
/*-------------------------------*/

The assignment calls for yet another code generation routine: **

**Add this to module CodeGen.c:
 void StoreVariable(char *);

void StoreVariable(char *Name) /* Store the Primary Register to a */
{ char a_string[30]; /* Variable */

 strcpy(a_string, "lea di, ");
 strcat(a_string, Name);
 EmitLn(a_string);
 EmitLn("mov [di], ax");
}
/*-------------------------------*/

Now, change the call in Main to call Assignment, and you should see a full assignment statement being
processed correctly.

void main() /* Main Program */
{
 Init();
 Assignment();
}
/*-------------------------------*/

Pretty neat, eh? And painless, too.

In the past, we've always tried to show BNF relations to define the syntax we're developing. I haven't done that
here, and it's high time I did. Here's the BNF:

<factor> = <variable> | <constant> | '(' <expression> ')'
<signed_term> = [<addop>] <term>
<term> = <factor> (<mulop> <factor>)*
<expression> = <signed_term> (<addop> <term>)*
<assignment> = <variable> '=' <expression>

BOOLEANS
The next step, as we've learned several times before, is to add Boolean algebra. In the past, this step has at
least doubled the amount of code we've had to write. As I've gone over this step in my mind, I've found myself
diverging more and more from what we did in previous installments. To refresh your memory, I noted that
Pascal treats the Boolean operators pretty much identically to the way it treats arithmetic ones. A Boolean "and"
has the same precedence level as multiplication, and the "or" as addition. C, on the other hand, sets them at
different precedence levels, and all told has a whopping 17 levels. In our earlier work, I chose something in
between, with seven levels. As a result, we ended up with things called Boolean expressions, paralleling in
most details the arithmetic expressions, but at a different precedence level. All of this, as it turned out, came
about because I didn't like having to put parentheses around the Boolean expressions in statements like:

 IF (c >= 'A') and (c <= 'Z') then ...

In retrospect, that seems a pretty petty reason to add many layers of complexity to the parser. Perhaps more to

the point, I'm not sure I was even able to avoid the parens.

For kicks, let's start anew, taking a more Pascal-ish approach, and just treat the Boolean operators at the same
precedence level as the arithmetic ones. We'll see where it leads us. If it seems to be down the garden path, we
can always backtrack to the earlier approach.

For starters, we'll add the "addition-level" operators to Expression. That's easily done; first, modify the function
IsAddop in unit Scanner to include two extra operators: '|' for "or," and '~' for "exclusive or": **

int IsAddop(char ch) /* Recognize an Addop */
{ int rval;

 rval = 0;
 if(strchr("+-|~", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

Next, we must include the parsing of the operators in procedure Expression: **

void Expression() /* Parse and Translate an Expression */
{
 SignedTerm();
 while(IsAddop(Look))
 { switch(Look)
 { case '+':
 Add();
 break;
 case '-':
 Subtract();
 break;
 case '|':
 _Or();
 break;
 case '~':
 _Xor();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

Next, the procedures _Or and _Xor: **

**Add to module Parser.c:
 void _Or(void);
 void _Xor(void);

void _Or() /* Parse and Translate an Or Operation */
{

 Match('|');
 Push();
 Term();
 PopOr();
}
/*-------------------------------*/

void _Xor() /* Parse and Translate an Xor Operation */
{
 Match('~');
 Push();
 Term();
 PopXor();
}
/*-------------------------------*/

And, finally, the new code generator procedures: **

**Add to module CodeGen.c:
 void PopOr(void);
 void PopXor(void);

void PopOr() /* Or TOS with Primary */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("or ax, bx");
}
/*-------------------------------*/

void PopXor() /* Exclusive-Or TOS with Primary */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("xor ax, bx");
}
/*-------------------------------*/

Now, let's test the translator (you might want to change the call in Main back to a call to Expression, just to avoid
having to type "x=" for an assignment every time).

So far, so good. The parser nicely handles expressions of the form:

x|y~z

Unfortunately, it also does nothing to protect us from mixing Boolean and arithmetic algebra. It will merrily
generate code for:

(a+b)*(c~d)

We've talked about this a bit, in the past. In general the rules for what operations are legal or not cannot be
enforced by the parser itself, because they are not part of the syntax of the language, but rather its semantics.
A compiler that doesn't allow mixed-mode expressions of this sort must recognize that c and d are Boolean
variables, rather than numeric ones, and balk at multiplying them in the next step. But this "policing" can't be

done by the parser; it must be handled somewhere between the parser and the code generator. We aren't in a
position to enforce such rules yet, because we haven't got either a way of declaring types, or a symbol table to
store the types in. So, for what we've got to work with at the moment, the parser is doing precisely what it's
supposed to do.

Anyway, are we sure that we DON'T want to allow mixed-type operations? We made the decision some time
ago (or, at least, I did) to adopt the value 0000 as a Boolean "false," and -1, or FFFFh, as a Boolean "true." The
nice part about this choice is that bitwise operations work exactly the same way as logical ones. In other words,
when we do an operation on one bit of a logical variable, we do it on all of them. This means that we don't need
to distinguish between logical and bitwise operations, as is done in C with the operators & and &&, and | and ||.
Reducing the number of operators by half certainly doesn't seem all bad.

From the point of view of the data in storage, of course, the computer and compiler couldn't care less whether
the number FFFFh represents the logical TRUE, or the numeric -1. Should we? I sort of think not. I can think
of many examples (though they might be frowned upon as "tricky" code) where the ability to mix the types might
come in handy. Example, the Dirac delta function, which could be coded in one simple line:

-(x=0)

or the absolute value function (DEFINITELY tricky code!):

x*(1+2*(x<0))

Please note, I'm not advocating coding like this as a way of life. I'd almost certainly write these functions in
more readable form, using IFs, just to keep from confusing later maintainers. Still, a moral question arises: Do
we have the right to ENFORCE our ideas of good coding practice on the programmer, but writing the language
so he can't do anything else? That's what Nicklaus Wirth did, in many places in Pascal, and Pascal has been
criticized for it -- for not being as "forgiving" as C.

An interesting parallel presents itself in the example of the Motorola 68000 design. Though Motorola brags
loudly about the orthogonality of their instruction set, the fact is that it's far from orthogonal. For example, you
can read a variable from its address:

MOVE X,D0 (where X is the name of a variable)

but you can't write in the same way. To write, you must load an address register with the address of X. The
same is true for PC-relative addressing:

MOVE X(PC),DO (legal)
MOVE D0,X(PC) (illegal)

When you begin asking how such non-orthogonal behavior came about, you find that someone in Motorola had
some theories about how software should be written. Specifically, in this case, they decided that self-modifying
code, which you can implement using PC-relative writes, is a Bad Thing. Therefore, they designed the
processor to prohibit it. Unfortunately, in the process they also prohibited _ALL_ writes of the forms shown
above, however benign. Note that this was not something done by default. Extra design work had to be done,
and extra gates added, to destroy the natural orthogonality of the instruction set.

One of the lessons I've learned from life: If you have two choices, and can't decide which one to take,
sometimes the best thing to do is nothing. Why add extra gates to a processor to enforce some stranger's idea
of good programming practice? Leave the instructions in, and let the programmers debate what good
programming practice is. Similarly, why should we add extra code to our parser, to test for and prevent
conditions that the user might prefer to do, anyway? I'd rather leave the compiler simple, and let the software
experts debate whether the practices should be used or not.

All of which serves as rationalization for my decision as to how to prevent mixed-type arithmetic: I won't. For a
language intended for systems programming, the fewer rules, the better. If you don't agree, and want to test for
such conditions, we can do it once we have a symbol table.

BOOLEAN "AND"
With that bit of philosophy out of the way, we can press on to the "and" operator, which goes into procedure
Term. By now, you can probably do this without me, but here's the code, anyway:

In Scanner, **

int IsMulop(char ch) /* Recognize a Mulop */
{ int rval;

 rval = 0;
 if(strchr("*&/", ch))
 { rval = 1;
 }
 return rval;
}
/*-------------------------------*/

In Parser, **

void Term() /* Parse and Translate a Term */
{
 Factor();
 while(IsMulop(Look))
 { switch(Look)
 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 case '&':
 _And();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

 void _And(void);

void _And() /* Parse and Translate a Boolean And Operation */
{
 Match('&');
 Push();
 Factor();
 PopAnd();
}
/*-------------------------------*/

and in CodeGen, **

void PopAnd(void);

void PopAnd() /* And Primary with TOS */
{
 EmitLn("pop bx");
 EmitLn("xchg ax, bx");
 EmitLn("and ax, bx");
}
/*-------------------------------*/

Your parser should now be able to process almost any sort of logical expression, and (should you be so
inclined), mixed-mode expressions as well.

Why not "all sorts of logical expressions"? Because, so far, we haven't dealt with the logical "not" operator, and
this is where it gets tricky. The logical "not" operator seems, at first glance, to be identical in its behavior to the
unary minus, so my first thought was to let the exclusive or operator, '~', double as the unary "not." That didn't
work. In my first attempt, procedure SignedTerm simply ate my '~', because the character passed the test for an
addop, but SignedTerm ignores all addops except '-'. It would have been easy enough to add another line to
SignedTerm, but that would still not solve the problem, because note that Expression only accepts a signed term
for the _FIRST_ argument.

Mathematically, an expression like:

-a * -b

makes little or no sense, and the parser should flag it as an error. But the same expression, using a logical
"not," makes perfect sense:

not a and not b

In the case of these unary operators, choosing to make them act the same way seems an artificial force fit,
sacrificing reasonable behavior on the altar of implementational ease. While I'm all for keeping the
implementation as simple as possible, I don't think we should do so at the expense of reasonableness. Patching
like this would be missing the main point, which is that the logical "not" is simply NOT the same kind of animal
as the unary minus. Consider the exclusive or, which is most naturally written as: **

a~b = (a and not b) or (not a and b)

If we allow the "not" to modify the whole term, the last term in parentheses would be interpreted as:

not(a and b)

which is not the same thing at all. So it's clear that the logical "not" must be thought of as connected to the
FACTOR, not the term.

The idea of overloading the '~' operator also makes no sense from a mathematical point of view. The
implication of the unary minus is that it's equivalent to a subtraction from zero:

-x <=> 0-x

In fact, in one of my more simple-minded versions of Expression, I reacted to a leading addop by simply
preloading a zero, then processing the operator as though it were a binary operator. But a "not" is not
equivalent to an exclusive or with zero ... that would just give back the original number. Instead, it's an exclusive
or with FFFFh, or -1.

In short, the seeming parallel between the unary "not" and the unary minus falls apart under closer scrutiny.
"not" modifies the factor, not the term, and it is not related to either the unary minus nor the exclusive or.
Therefore, it deserves a symbol to call its own. What better symbol than the obvious one, also used by C, the '!'
character? Using the rules about the way we think the "not" should behave, we should be able to code the

exclusive or (assuming we'd ever need to), in the very natural form:

a & !b | !a & b

Note that no parentheses are required -- the precedence levels we've chosen automatically take care of things.

If you're keeping score on the precedence levels, this definition puts the '!' at the top of the heap. The levels
become:

1. !
2. - (unary)
3. *, /, &
4. +, -, |, ~

Looking at this list, it's certainly not hard to see why we had trouble using '~' as the "not" symbol!

So how do we mechanize the rules? In the same way as we did with SignedTerm, but at the factor level. We'll
define a procedure NotFactor: **

**Add to module Parser.c:
 void NotFactor(void);

void NotFactor() /* Parse and Translate a Factor with Optional "Not" */
{
 if(Look == '!')
 { Match('!');
 Factor();
 NotIt();
 }
 else
 { Factor();
 }
}
/*-------------------------------*/

and call it from all the places where we formerly called Factor, i.e., from Term, Multiply, Divide, and _And. **

void Term() /* Parse and Translate a Term */
{
 NotFactor();
 while(IsMulop(Look))
 { switch(Look)
 { case '*':
 Multiply();
 break;
 case '/':
 Divide();
 break;
 case '&':
 _And();
 break;
 default:
 break;
 }
 }
}
/*-------------------------------*/

void _And() /* Parse and Translate a Boolean And Operation */
{
 Match('&');
 Push();
 NotFactor();
 PopAnd();
}
/*-------------------------------*/

Note the new code generation procedure: **

**Add to Module CodeGen.c:
 void NotIt(void);

void NotIt() /* Bitwise Not Primary */
{
 EmitLn("not ax");
}
/*-------------------------------*/

Try this now, with a few simple cases. In fact, try that exclusive or example, **

x=a&!b|!a&b

You should get the code (without the comments, of course): **

mov ax, A ; load a
push ax ; push it
mov ax, B ; load b
not ax ; not it
pop bx
xchg ax, bx
and ax, bx ; and with a
push ax ; push result
mov ax, A ; load a
not ax ; not it
push ax ; push it
mov ax, B ; load b
pop bx
xchg ax, bx
and ax, bx ; and with !a
pop bx
xchg ax, bx
or ax, bx ; or with first term
lea di, X
mov [di], ax ; store result

That's precisely what we'd like to get. So, at least for both arithmetic and logical operators, our new precedence
and new, slimmer syntax hang together. Even the peculiar, but legal, expression with leading addop:

~x

makes sense. SignedTerm ignores the leading '~', as it should, since the expression is equivalent to:

0~x,

which is equal to x.

When we look at the BNF we've created, we find that our boolean algebra now adds only one extra line: **

<not_factor> = [!] <factor>
<factor> = <variable> | <constant> | '(' <expression> ')'
<signed_term> = [<addop>] <term>
<term> = <not_factor> (<mulop> <not_factor>)*
<expression> = <signed_term> (<addop> <term>)*
<assignment> = <variable> '=' <expression>

That's a big improvement over earlier efforts. Will our luck continue to hold when we get to relational operators?
We'll find out soon, but it will have to wait for the next installment. We're at a good stopping place, and I'm
anxious to get this installment into your hands. It's already been a year since the release of Installment 15. I
blush to admit that all of this current installment has been ready for almost as long, with the exception of
relational operators. But the information does you no good at all, sitting on my hard disk, and by holding it back
until the relational operations were done, I've kept it out of your hands for that long. It's time for me to let go of it
and get it out where you can get value from it. Besides, there are quite a number of serious philosophical
questions associated with the relational operators, as well, and I'd rather save them for a separate installment
where I can do them justice.

Have fun with the new, leaner arithmetic and logical parsing, and I'll see you soon with relationals.

